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FOREWORD

This final report describes technical work accomplished during the Labyrinth
Seal Analysis program conducted under Contract AF33615-80-C-2014. The work

described was performed during the period 15 June 1980 to 30 April 1985. This

contract with Allison Gas Turbine Division of General Motors Corporation was
sponsored by the Air Force Wright Aeronautical Laboratories, Aero Propulston
Laboratory, United States Air force, Wright Patterson AFB, Ohio, with Mr.

Charles W. Elrod (AFWAL/POTX) as Project Engineer. Technical coordination was

provided by 1st Lt. Ketth C. Topham.

The technical effort reported in this volume was performed by Or. Raymond E.
Chupp, Mr. Glenn F. Holle, Mr. Raymond L. Owen, Mr. Thomas €. Scott, and Mr.
Oonald Tipton. The experimental efforts reported in this volume were per-
formed by Mr. Glenn F. Holle, Mr. John W. Rothrock, Jr., Mr. Steven G. Gegq,
Mr. Steven J. Hilpisch, and Mr. Warren S. Sherman. Managerial direction was
provided b‘ Mr. Howard G. Lueders and Mr. Peter C. Tramm.

This report was submitted in four volumes in May 1985. > Volume I summarizes
the Labyrinth Seal Analysis Model. Volume Il presents the user's manual for
the Analysis Nodel computer code. Volume IIl contains the experimental re-
sults and summarizes the DEsign Model based on these empirical data. Volume
IV presents the user's manual for the Dﬁsign Nodel computer code. ”Ty:bf"Js

ings or conclusions presented. It 1s published only for the exchange and
stimulation of ideas. R
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1.0 INTRODUCTION

The present trend of gas turbine design has been characterized by significant
increases in cycle pressure ratio and turbine inlet temperatures to provide
higher thermal and propulsive efficiencies. These trends accentuate the need
for improvements in sealing technology and the development of advanced design
and anaiysis capabilities to reduce gas path seal leakage, minimize vent leak-
age, provide better control over sophisticated cooling circuits, and prevent
high levels ot seal leakage into critical aerodynamic locations in the turbine

gas path.

Labyrinth seal design and analysis methods available today rely heavily on
empirical relationships which severely limit the application range. Availahle
analytical formulations which originated many years ago do not take advantage
of modern flowfield calculation techniques such as offered by solution algo-
rithms for the Navier-Stokes equations. In addition, empirically derived
models do not provide the design engineer with guidance on how to improve the
seal efficiency beyond the information that has been determined experimentally.

The Labyrinth Seal Analysis program was, therefore, directed to the develop-

ment of an advanced labyrinth seal analysis computer code to provide the seal
spectalist with a tool to calculate and evaluate the details of the seal in-

ternal flow field and to assess the effects of subtle geometric changes rela-
tive to improving seal efficiency.

To further enhance the predictive accuracy of labyrinth seal performance, the
program included the development of an improved empirical design model to pro-
vide the calculation of the flow parameter characteristic based on salient
geometric and aerodynamic parameters.

The Labyrinth Seal Analysis effort was structured as a three-phase program.
Phase I was directed to the analytical development of both an “*analysis" mode)
and an improved empirical “design* model. Supporting rig tests, including
flow visualization, passage velocity surveys and performance data, were con-
ducted under Phase 11. The Phase IIl effort was devoted to improving the
“analysis" program usability.




The *analysis* model, presented in Volume I of this report (66)*, uses numeri-
cal solutions of the time dependent, compressible Navier-Stokes equations to
provide the aerodynamic details of the seal interior flowfield. . Using existing
Navier-Stokes computer codes which incorporate a consistently split, linearized
block, implicit algorithm, suitable coordinate systems have been constructed

to analyze single-knife and multiple-knife straight and stepped labyrinth
seals. The continuity, momenta, and energy equations are solved with a mixing
tength turbulence model or with a two-equation turbulence model based on tur-
bulerce kinetic energy and dissipation rate. Typical "analysis" model geo-
me*ric capabilities permit variations in clearance, knife height, knife thick-
ness, knife sharpness, and, where appropriate, knife pitch, number of knives,
and knife angle. Surface roughness, rotation, heat transfer, and coolant flow
irjecticn are also input variables. Modifications were made to the program to
simplify input and output for user friendly operation.

The user's manual for the labyrinth seal analysis code is presented in Volume
II1 (67). The wualysis program has been compiled for the COC and Cray [ com-
puters.

The “design" model development, prese~ted in this volume, is based on detailed
knife-to-knif? (Ki{K) flow analysis which uses empirical corrections to » sim-
plified one-dimensivnal theory. The empirical corrections for seal geometric
effects are based on statistical analyces of generalized experimental perfor-
mance. The “design® model is capable of predicting the leakage for a wide
range of st{raight, stenped, and mixed -traigh. and stepped seal configuraitions.
in addition, the “"design® model has the capabilitty to optimize a seal confiju-
ration within specified gecmetrical constraints such as c¢learance, axial en-
velope, inlet air temperature, and overall pressure ralio. The user's manual
for the labyrinth seal design code 1s presented in Volume IV (68).

Rig tests were performed on selected fuli-scale labyrinth seal configuratians
to ertend the data base and provide varification for the “design" model. A
test program devoted to the characterization of straight and stepped seal per-
formance with a variety of open-cell honeycomb lands was run statically and

*Numbers in ( ) refer to References, page 148.
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dynamically in the three-dimensional (3-D) test rig. Large-scale seai models

were tested in the Allison two-dimensional (2-D) seal test rig to obtain leak-
age performance, intraseal pressures and temperatures, velocity distributions,
and flow field visualization for *analytical® model verification.

This volume is devoted to the presentation of results from the literature sur-
vey, development of the empirical “design" model, and supporting experimental
data.
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2.0 SUMMARY

The Design Model development program was started with a literature search to
identify significant geometric and aerodynamic parameters that influence leak-
age, to determine the most useful theoretical approaches to predicting laby-
rinth seal performance, and to acquire a data base upon which to develop an
advanced empirical model.

The knife-to-knife approach to modeling labyrinth seal performance was selected
as the most promising technidue to achieve flexibility and accuracy. Using an
empirical building block procedure, a three element loss model was formulated
for a single knife and extended to include multi-knife straight seals and
stepped seals. A statistical analysis was employed with the performance data
base to derive loss correlations for contraction, expansion, and venturi and
friction. These correlations were derived not only to produce a good data
match, but to provide physical realism to the loss process. The resulting
knite-to-knife (KTK) seal design model demonstrated an accuracy of +5% in the
prediction of leakage flows for the data base configurations which include
straight and stepped seals with vertical or slanted knives.

A seal design optimization routine was developed for the KTK Design Model. '
With this capabiiity, a minimum leakage seal configuration can be identified
for a specific engine application, e.g., design constraints on clearance, axial
envelope, inlet air temperature, and overall pressure ratio.

Performance data were acquired by testing specific labyrinth seals to fil)
voids in the KTK model data base obtained from the 1iterature search and
existing Allison data. Twenty-three tests on straight seals (12 tests) and
stepped seals (11 tests) were conducted to extend experimental coverage on the
effects of knife angle, tip thickness, pitch, height, number of knives, and
land surface roughness. This entire data base was utilized in the development
of the Allison Design Model.




Flow visualization studies were conducted to provide qualitative data upon
which to identify loss mechanisms and to verify flow phenomena calculated with
the Analysis Model (66). These tests were conducted in the 2-D static rig us-
ing large-scale seal hardware with a schlieren flow visualization technique.

A total of nineteen tests were performed on straight seals, and six tests were
conducted on stepped seals. Valuable insights were obtained about the con-
formation of flow fields through single knife and multiple knife seals. The
flow perturbations introduced by knife edge rounding, knife slanting, knife
spacing, and clearance change were observed. Although some still pictures
were acquired, the motion on the video tapes provided the mos: definitive de-
scription of the internal flow characteristics. These visualization experi-
ments provided good qualitative verification of the Analysis Model and aided
in the corroboration of loss mechamisms for the Design Model development.

Five performance tests were conducted on large-scale (ten times size) straight
seals to provide quantitative comparisons of seal leakage characteristics with
the Analysis Model. Four large-scale tests (at five times full-scale) were
performed with stepped seals. These tests were done on the large-scale flow
visualization models in the 2-D static rig. Keasurements of static pressure
and total temperature were made at selected points in the intraseal flow pass-
age. A comparison with an approximate analytical equation for labyrinth seal
pressure gradient derived by Xearton and Keh (31) showed good agreement with
the exception of the first knife which seems to provide a larger than antici-
pated pressure drop. As the overall seal pressure ratio increases, the accel-
eration to the last knife becomes more pronounced until choking occurs. The
jet from the last knife appears to behave in the same way as the discharge
from a convergent, annular nozzle with an extensive base recirculation region.

Detailed velocity surveys were made on the three knife straight and stepped
seal models with the tapered large-scale knives using LDV and hot wire mea-
surement techniques. Velocity distributions measured in front 3f the first
knife, in the clearance gaps, and in the cavities between knives provided good
qualitative agreement with the Analysis Model. The hot wire measurements




produced better resolution of the velocity profiles than the LDV due to the
proportionately large spot size of the LDV beam. The LDV data appeared to be
dampened due to “smearing" of the velocity gradient through the spot. Local
distortions of the flow field were incurred at the seal land due to the access
holes for entry of the hot wire probe. A redesign incorporating a reduced
slot size provided substantial improvement in the accuracy of velocity profile
data. The integrated velocity profiles in the clearance gaps of the straight
seal and the stepped seal agreed well with the mass flowrates measured down-
stream of the rig.

Additional full-scale performance testing was conducted to extend the laby-
rinth seal data base to evaluate the effect of interknife cavity aspect ratio
(KP/KH) and the interaction with clearance. A total of eighteen tests were
made on vertical knife straight seals with interknife cavity aspect ratios
from 0.40 to 4.0 at three clearance values. The results of these tests con-
firmed the optimum performance of a square (KP = KH) interknife cavity for the
knife geometry utilized. The Design Model predicts the performance of straight
seals very well at knife tip clearances of 0.010 in. or greater when inter-
knife cavity aspect ratio is 1.0 or larger. However, significant overpredic-
tions of leakage can occur for straight seals with short or deep interknife
cavities (KP < KH) or with clearances near 0.005 in. The uncertainties asso-
ciated with full-scale model testing at small parametric dimenstons are sus-
pected as the cause of the data dispersion which is the source of the modeling
problem.

Wide-spread usage of open-cell honeycomb lands over the last ten years prompted
an experimental effort to quantify the effects of honeycomb on seal perfor-
mance. Thirty-eight tests, using the 3-D dynamic rig, were conducted on a

five knife straight seal (30 tests) and on a four knife stepped seal (8 tests)
with three honeycomb cell sizes. The effect of knife slant angle was investi-
gated statically and dynamically to 785 ft/sec knife tip speed. The data sup-
ported earlier indications (54) that open-cell honeycomb lands could be bene-
fictal or detrimental to the performance of multiple knife straight seals. As
expected, the smaller honeycomb cell size tends to more closely follow solid




land performance characteristics, but the leakage is strongly affected by the
ratio of cell size to clearance. In general, honeycomb cell sizes of 0.031 in.
and larger are detrimental to straight seal performance at clearances less
than 0.010 in. A reduction in leakage as compared with a solid-smooth land
was noted for honeycomb cell size to 0.125 in. at a clearance of 0.020 in. A
significant rise in the temperature of the air leaking through the seals with
honeycomb lands is associated with the increased pumping work required to
swirl the flow past the honeycomb.

Eight tests were performed to evaluate the effect of honeycomb on stepped seal
performance. In all cases, the application of honeycomb resulted in a large
increase in leakage relative to the solid-smooth land.

During this Labyrinth Seal Analysis program an extensive bibliography and a
large performance data base have been compiled. The KTK Design Model was de-
rived from this data base. The evaluation tests vindicated the selection of
three element loss correlations for the KTK flow analysis. The Design Model
provides an improved performance prediction capability applicable to a wide
range of seal geometric and aerodynamic parameters. The use of an optimiza-
tion algorithm with the KTK performance model enables the selection of the
seal configuration which will leak the least for an arbitrary set of design

constraints.




3.0 LITERATURE SURVEY

A literature survey was conducted to identify the most successful theoretical
approaches to modeling labyrinth seal performance and to obtain “outside" ex-
perimental data on conventional labyrinth seals. Citations of books, reports,
technical papers, and articles relating to labyrinth seal technology were found
through automated literature searches and reviews of NTIS Government Report
Announcements. A detailed discussion of the literature search can be found in
the interim report (65).

3.1 ANALYTICAL MODELS

The reference evaluations (64) revealed certain general areas of agreement
among past and present researchers as well as some points of disagreement or
departure.

The leakage through a labyrinth seal is invariably modeled as an adiabatic
throttling process. Gas phase and vapor phase working fluids have been de-
scribed with the thermally perfect equation of state and calorically perfect
thermodynamic assumptions with apparently good results. The neglect of real
gas and heat transfer effects evidently is of secondary importance to most
labyrinth seal applications. The thermodynamic model for the series-of-
throttles process fdeally predicted for labyrinth seal leakage is {llustrated
as shown in Figure 1.

The ideal throttling model has led to two schools of analytical representation
for labyrinth seal performance calculations. The most widely employed assump-
tion treats the labyrinth seal as a series of discrete restrictions with asso-
clated local pressure losses. However, another model characterizes the laby-
rinth seal as a rough pipe with uniformly distributed wall friction. The gen-
eral opinion of most researchers seems to support the series-of-restrictions
model as having a more physically realistic formulation with the attendant
ability to develop the pressure loss components on a rational geometric and
parametric basis. The rough pipe model seems to rely more heavily on purely
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empirical correlations to predict the equivalent wall friction. However, very
little difference in model accuracy, current or potential, could be found.

Several survey papers on labyrinth seals were utilized to assist the literature
search. Those discussions cited in Ref 3, 5, 8, 19, 39, 51, and 57 elaborate

on the series-of-restrictions models and the rough pipe models.

3.1.1 Rough Pipe Global Model

The rough pipe model assumes that the leakage through a labyrinth seal is
analogous to the compressible flow through a duct with uniformly distributed
roughness. Under these assumptions the resulting labyrinth seal model becomes
global in the sense that no mechanistic analysis of the internal flow is re-.
quired. The early Fanno line analysis concepts of Becker (6) were extended by
Trutnovsky (57) where the pressure drop characteristics of the seal were re-
lated to an equivalent wall roughness, 4f, of the basic seal channel which is
characterized by t/H. This concept was simplified and elaborated on by
labriskie and Sternlicht (61) who correlated the equivalent wall roughness
parameter with certain seal geometry characteristics and a Reynolds number
parameter. The mathematical formulation and data correlation of the labyrinth
seal performance based on equivalent roughness friction factor can evidently
be carried out with accuracies equivalent to those achieved with the series-of-
restrictions models. However, the lack of physical relevance of the roughness
friction factor Vimits the use by the designer.

3.1.2 Series-of-Restrictions Global Model

The series-of-restrictions model assumes that leakage through a labyrinth seal
is governed by the local character of the sequenttal accelerations and decel-
erations experienced as the fluid passes through the clearance gaps at the
knives. The earliest analyses based on this model postulated the total annihi-
tation of the dynamic nressure after each knife, 1.e., complete thermodynamic
reheat, to derive a global equation of the form,

N
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The value of a results from the local thermodynamic restrictions imposed upon
the model derivation. For seal leakage limited to the incompressible flow
regime, a = 0 (10 and 55). When the flow regime is considered compressible,
the a = 1 for local isothermal processes (17 and 41) and a = 2/y for local
isentropic processes (18).

The theoretical derivation of the global equation is postulated on equal effec-
tive areas for each clearance gap. This assumption is approximately true for
axial, straight, or staggered seals with constant clearance. Then the primary
deviation is attributable to compressibility effects, CDn = f (Pn/Pn+l). For
stepped seals and, more dramatically, for radially oriented seals of any type,
the constant effective area assumption leads to erroneous leakage predicttons.
However, these geometrical contributions to area variation can be accounted

for analytically (42) with some additional formulation complication proposed

by Gercke (21).

The global model assumption that contributes the greatest deviation from the
real physics of straight-seal leakage is the assumption of no velocity carry-
over, ' = 1,0. The residual velocity in jets encountering downstream knives
can significantly increase the leakage through straight seals (18). A variety
of analytical correction factors (26, 58, and 60) and empirical correction
factors (18 and 25) have been proposed to account for this global model defi-
ciency.

3.0..3 Knife-to-knife Model

A1l global models (both series-of-restrictions and rough pipe approaches) en-
counter difficulties with supercritical seal operation (45). A supplementary
and necessarily approximate model for the choking pressure ratio is required
(31, 40, and 55). Also, the global models do not treat the variation of knife
discharge coefficient and velocity carry-over realistically with respect to the

12
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pressure ratios through the seal (43). The accurate treatment of clearance
area changes and other aonconstant geometrical parameters is difficult at best
(32) and is frequently impossible. The routine use of large, high-speed digi-
tal computers for engineering design makes the basic knife-to-knife analysis
of individual labyrinth seal designs feasible from the standpoint of time and
effort and desirable for flexibility, comprehensiveness, and accuracy. In the
knife-to-knife approach, the one-dimensional flow parameters in the knife
throats are computed and linked together by a total pressure loss calculation,
Usually, a flow coefficient is utilized {0 account for the vena contracta in
the knife throat. Each knife may have an individual flow coefficient value,
or groups of knives may have one value and the last knife another. Carryover
of the velocity head in a straight seal is considersd by taking only a partial
velocity head Yoss in total pressure between knives. Komotori (37) utilized
an expansion angle to determine the fraction of velocity head lost.

Callendar (10) performed an early knife-to-knife analysis using the isentropic
St. Venant-Wantzel flow equation with adiabatic throttling process constraints
to evaluate the accuracy of the global equations of Stodola and Martin. €glt
(18) later utilized the same technique to extend his flow curves to include
3mall numbers of knives (effectively 1 < KN < 4). Recent researchers have ex-
tended and refined the knife-to-knife model until it 15 unquestiorably the
most versatile and precise labyrinth seal design model.

Since Koenig and Bowley (34) demonstrated the versatility of the knife-to-knife
model using the compressible flow equation of St. Venant and Wantzel with the
seal performance data of £g11 (18) coded for digita)l computer, a series of
similar but increasingly complicated knife-to-knife models hava bean proposed.

The knife-to-knife seal models of Komotori and Rori (36) are by far the most
sophisticated and versatile proposed to date. The models are broadly based on
the adiabatic character of the fluid flow through a series of throttles. How-
ever, the applicability to seal leakage involving heat transfer has been demon-
strated experimentally, These data indicated a very weak effect of h2at trans-
fer on leakage wagnitude. The flow through each knife gap is calculated with

13
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48 the St. Venant-Wantzel equation for isentropic flow corrected by an empirica)
discharge coefficient. DRownstream expansion losses are assumed complete for
staggered and stepped seais. However, the velocity carry-over effects for
straight seals are modeied as a sudden expcnsior pressure loss from Borda's
equation. The expansion ratio is obtained from a constant jet expansion angle
which was derived from test data and the geometrical characteristics of the
seal knife pitch and clearance. This straight seal model was empirically ex-
tended by Komotori and Miyake (37) to account for the effects of knife rota-
tion on leakage.

A similar knife-to-knife approach was derived by Hawas and Muneer (24). A cor-
rection was added to the single knife discharge coefficient for the influence
of downstream knives. Also, an empirical correction for velocity carry-over.
in straight seals was substituted for the theoretical 8orda equation,

The results of the evaluation of the surveyed labyrinth seal performance models
which have been pro.ssed in the 1iterature indicate that the global models are
no longer sufficiently versatile or accurate for the analysis, design, and
optimization o modern labyrinth seals. The knife-to-knife models with physi-
cally appropriate empiricai corrections appear to offer the greatest potential
tor the accurate calculation of seal performance.

3.2 AERODYNAMIC PARAMETERS

The aerudynamic parameters which specif: labyrinth seal performance on a dimen-
sionlens, aeneralized basis are given in Table 1. The labyrinth seal perfor-
mance is conventionally expressed in terms of the dimensionless mass flowrate
parameter as a function of overall seal pressuve ratio. Frequently, the mass
flowrate parameter is expressed dimensionally, but with almost as much gener-
ality, as ¢ = w\[T;7PUAt (b °R]/2/1bf sec), and the reciprocal

of the pressure ratio, r, is used to obtain a finite range of that parameter,
0 to 1.0. Perry (46) demonstrated the facility of elliptical coordinates,

¢2 versus (1-r2). in Yinearizing orifice flow data. Inspection of

Stodola's global formula for labyrinth seal leakage supports the efficacy of
elliptical CUordinateé for the presentation of labyrinth seal performance.

14
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BN - Table 1.

"; Aerodynamic parameters for labyrinth seals.*
v
s&;f)ﬁg ff Parameter Symbo Function Effect
y . "n
Lo N :
i&. e ¢ Muss Flowrate ¢ wv RTu/-\lgc PyAt Dependent variable
" . Pressure Ratio PR Py / Pp Strong
WP
A Ll Axial Reynolds Re (w/A¢) 2CL/uy Moderate
~ 3 Number
fj;.l-"‘ Kuife tip speed  Veore V/Y 9cRTy Moderate
- kotational Rey Py w@/uR Ty Weak
N 3 Reynoids Number

Taylor dNumber Ta (PUV CL/uuRTU)VCL/rK Weak

*See seal nomenclature and list of symbols.

The axial Reynolds number influences the discharge coef?icients for the sea:
knives, but its effect on overall seal performance has not been established
experimentally. The axial Reynolds number, shich is constant for 2 specific
seal operating at a given pressure ratio with the exception of very slight
temperature and pressure effects on viscosity, has been found by Wittig, Dorr,
and Kim (63) to affect the performance of similar seals of different sizes.

Rotor angular velocity affects seal performance at high knife tip speads, but
the characteristic is strongly perturbed by seal geometry and land surface
conditions in a presently undetermined manner (37). Similarly the effect of
rotational Reynolds number ts unknown but may be involved with the knife tip
speed effects observed. Taylor number has no significant effect on the leak-
b age past cylinders rotating relative to one another, although it has a strong
effect on heat transfer. Howcver, its influence on the labyrinth seal leakage
has not been investigated. Intuitively, the effect of Taylor number, which is
the product of a Reynolds number and cL/rK. would seem to be insignificant
hased on the excellent agreement between 2-D rig and 3-D rig test results.
Since curvature (CL/rK) appears to have little if any effect on the perfor-
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mance, all of the influence could be ascribed to rotational Reynolds number
alone. The present dearth of reliable test data and the divergent opinions of
many researchers on the importance of rotational effects would make modeling
of the knife tip speed, rotational Reynolds number, and Taylor number effects
highly speculative and unreliaple.

3.3 GEOMETRIC PARAMETERS

The seal geometry parameters which specify labyrinth seal performance can be
expressed in terms of geometrical similarity criteria compatible with the gen-
eralized aerodynamic performance parameters (8). The strongest geometrical
variable affecting seal leakage is the clearance between the knife tip and the
land surface (CL), which defines the throttling area (At)‘ Therefore, the
seal clearance is the best basis for establishing geometrical similarity in
labyrinth seal design. A 1list of the geometric parameters for conventional
straight and stepped labyrinth seals is given in Table 2. The classification
by influence of the geometric parameters in Table 2 is based on the empirical
evidence accumulated from the test results and opinions of many researchers
reviewed during the literature survey.

The strong effect of the number of knives was recognized in the earliest analy-
ses of labyrinth seal performance. Knife angle influence was not considered
until later, after the separate effects of stream contraction due to orifice
geometry and stream velocity distribution due to Reynolds number were observed.

The importance of relative knife tip thickness on the discharge coefficient
was determined by £g1§ (18). Trutnovsky (57) reported on the investigaticn by
Troyanovski of the influence of knife blade shape and knife tip sharpness.

The effect of leading-edge rounding on discharge coefficient was quantified.
Jackson (28) showed that the back face geometry of the knife could affect
carry-over. Relative knife pitch, KP/CL, was used by Jones (30) to correlate

the performance of straight seals in the practical range of relative knife tip
thickne~s, KT/CL. Stocker (54) showed that some optimization of KP/CL was
possible in stepped seals. Abramovich (1) contends that relative knife height




Table 2.

e

; Geometric parameters for labyrinth seals.*
]
3
3
é Parameter Symbol Functional Influence
3 . . Straight Stepped
.‘ ,
i Number of knives KN Number of throttles Strong Strong
Knife angle Ke Orifice geometry Moderate Moderate
Knife tip thickness KL Relative throat length Moderate Moderate
CL
ry .
Knife tip sharpness — knife relative sharpness Moderate Moderate
CL
Knife blade shape parallelogram Orifice geometry Weak to Weak
‘ tapered, etc Moderate
§ Knife pitch %% Relative throttle spacing Moderate Weak
y Knife height K Relative chamber depth  Weak Weak
4
N Land surface E%E Land relative roughness Moderate Weak
B roughness
t
" Land surface %% Land relative porosity Moderate Weak to
porosity Moderate
SH
Step height L Relative step height - Weak
Distance to contact %%Q Rotor relative axial - Weak to
\ location Moderate
Flow direction STLD Flow down the stator step - Weak
5 LTSD Flow up the stator step

*See nomenclature and 1ist of symbols.
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has a weak influence on straight seal performance until the labyrinth cavity
becomes so shallow that the through-flow jet expansion fills the cross-section.
Then the sudden compression of the stream which occurs at the downstream knife
is controlled by the relative knife height geometry. Testing by Stocker (54)
indicated a weak effect of relative knife height on stepped seals, also.

Stocker (54) also initiated some investigation of the effects of land surface
roughness and porosity on seal performance. Surface roughness was shown to
have a limited range of benefit, but porosity always has a detrimental effect
on seal leakage. Most investigators have accepted the hypothesis that the
tortuosity of the step geometry results in nearly complete destruction of the
carry-over velocity. However, experiments by Stocker (54) have demonstrated a
weak but surprising optimization for relative step height. Distance to contact
and flow direction were also shown to have a usually small but measurable ef-
fect on seal performance by Stocker (53) and Cox (14).

3.4 LABYRINTH SEAL PERFORMANCE DATA BASE

The data base of labyrinth seal performance was established by a careful
screening process. A1l applicable sources of experimental seal data identi-
fied in the literature survey were examined to see if the tests yielded accu-
rate results and if all pertinent geometric and aerodynamic parameters were
reported. In some cases, authors were contacted to obtain additional informa-
tion, Data deemed satisfactory were digitized electronically, converted to
flow factor versus pressure ratio and plotted. These plots were reviewed to
eliminate apparent bad data by identifying specific points or curves in obvious
disagreement with the majority of the data.

Data which passed the screening process were placed in a computer data file.
The file contained the performance test data points (¢ versus pressure ratio)
and corresponding seal geometric parameter values. This file then became the

data base for the Allison Design Model discussed in Section 4.0.

18




Table 3 summarizes the sources, seal types, and quantities of performance data
in the data base. A configuration represents a set of test data points for a
given seal geometry. Data were included for 175 different single-knife seal,
straight seal, and stepped seal configurations. The number of data points per
configuration varied from 1 to 54 yielding a total of 1839 test points in the
data base. Table 4 1ists the ranges of fhe geometric parameters covered in
the data base.

Tables 3 and 4 show that the data base used to build the Design Model is ex-
tensive and covers a wide range of parameter values. The data come from a
diversity of sources with 40X of the configurations tested at Allison under
various contracts including this AFAPL contract.

3.5 DESIGN MODEL CANDIDATES

The 1iterature survey yielded several potentially useful performance prediction
models for labyrinth seals as summarized in Table 5. Six models were coded for
computer solution. Five models were global types: Egli, Allison Design Manual
(similar to Egli), Jones, Martin and Stodola. One model was chosen to repre-
sent the knife-to-knife analyses, i.e., Hawas and Muneer. The global model
type refers to the approach of treating an entire seal, rather than the se-
quence of individual internal component geometries, as a means of estimating
leakage. A comparison of the predictions from the models with test data for a
typical seal configuration in the data base is given in Figure 2. The mode!l
predictions deviate from the test data by as much as -17% to +38%, indicating
the wide range of results which can be calculated from models available in the
literature. Additional comparisons of the three global models based on per-
formance maps, 1.e., Egli, Jones, and the Allison Design Manual, have been made
with test data for 38 of the straight seal configurations in the data base.

The performance map model type uses input plots of flow function versus geo-
metric variables to obtain leakage rates. Deviations were found to range from
-22% to +76%, again demonstrating the inadequacy of available models to accu-
rately predict seal performance for a variety of geometric designs.
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Table 3.
Labyrinth seal Design Model data base.

Number of seal configqurations

Single knife Straight Stepped Total
Kearton and Keh (31) 3 0 0 3
Caunce and Everitt (13) 6 4 46 56
Meyer and Lowrie (43) 10 0 1} 10
Komotori and Miyake (37) 1 12 0 13
Harrison (23) 0 13 10 23
Allison (14), (53), (54)
(IR&D), and (AFAPL 8 29 33 70
contract)
Total No. Configurations 28 58 89 175
Total No. Test Points 373 179 687 1839
Table 4.
Parameter ranges in the labyrinth seal Design Model data base.
Seal type
Single Straight Stepped seal

Parameter knife seal STLD dir. LTSD dir.
KN min 1 2 2 2
max 1 12 6 6
KT/CL min 0.21 0.21 0.50
max 3.3 4.4 2.64 1.50
Ke min 30 60 50 50
max 90 90 90 90
KH/CL min - 2.1 5.1 5.1
max - 31.3 29.4 28.0
KP/CL min - 4.0 6.4 9.2
max - 56.3 53 40
c/(2CL) min 0 0 0 0
max 0 0.030 0 0.030
SH/CL min - - 2.0 4.0
max - - 29.4 12.5
DTC/CL min - - 0.85 4.1
max - - 40 19.4
(KP-KT)/CL min - 3.5 6.2 8.9
max - 55.0 51.8 38.5

---------------------
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Table 5.
Design model types reported in the literature.

Modeling
Approach Global (Control Volume) Knife-to-Knife
Analysis Friction
Method Formula Factor Performance Maps Fluid Mechanical
Authors Martin Becker Eqli Morrow
Stodola Trutnovsky Jones Robinson
Dollin & labriskie & Myer & Lowrie Idel'chik
Brown Sternlicht  Heffner Abramovitch
Gercke Allison Koenig & Bowley
Bartosh Design Manual Komotori
Scheel Hawas & Muneer
Vermes Benvenuti, et.al.
Applicability Simple Difficult Moderately Complex.
to complex difficult Good fluid me-
chanical concept
of losses.
Solution Manual Manual Manual Computer
computation or or computation
computer computer
computation computation
Disadvantages Difficult to Requires ex- Requires exten- Requires exten-
apply carry- tensive sive overall sive models of
over correc- friction correlations for knife throat &
tions & factor or flow coefficient cavity fluid
knife-to- flow coeffi- & carry-over dynamics.
knife flow c¢ient data. factor.
coefficient Lacks physi-
variations. c¢al signi-
ficance.
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One approach to developing a design model is simply to correct the candidate
model(s) with a mulitiplying factor. The factor in general would be a function
of the geometric parameters. This approach was pursued by calculating the
multiplying factor from the model-test data deviations, i.e., ratio of test
flow factor to calculated value, and correlating the result as a function of
the geometric parameters. A linear regression analysis for several models for
both straight and stepped seals was used to obtain the correlation. The re-
sults showed that the modified models could predict the seal performance within
+1% mean deviation.

Using an overall correction factor approach on any existing model is simple to
implement and would give reasonably accurate results for the data ranges con-
sidered. However, such models would not lend themselves to extrapolation be-
cause the terms in the correlations would, in general, not be physically rele-
vant.

Based on the review of various candidate model approaches for considering the
flow in labyrinth seals, a knife-to-knife (KTK) analysis was selected as a
starting point for the Design Model in this program. The KTK approach

provides:

o the most physically realistic formulation of the knife throat and cavity
fluid dynamics in terms of geometric parameters,

o interknife pressure information,

o a versatile tool with growth potential to include additional parameters
and/or extended parameter ranges.
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4.0 LABYRINTH SEAL DESIGN ANALYSIS

The labyrinth seal Design Model developed by Allison is based on the knife-to-
knife (KTK) flow analysis approach. The losses at each knife have been sep-
arated into the following three dynamical mechanisms as shown in Figure 3:

o contraction--stations 1 to 2 and 4 to 5,
o venturi and wall friction--stations 2 to 3 and 5 to 6,
o full or partial expansion--stations 3 to 4 and 6 to 7.

The three loss coefficients can be related to the geometric and aerodynamic
seal parameters in a physically realistic way. Consequently, the chosen
knife-to-knife model is potentially more fiexible and accurate than a global
(control volume) model which uses overall flow coefficients or a KTK model
that employs a single discharge coefficient for each knife.

4.1 MODEL FORMULATION

The design model is based on:

¢ 2 one-dimensional representation of a locally adiabatic flow which may be
piecewise diabatic,

o the calculation of three individual loss coefficients at each knife from
flow and geometric conditions,

o the modification of the loss coefficient values due to the position of the
knife in the seal (presence of adjacent knives),

0 a sequential solution for the pressure distribution in the seal from the
dynamics of the flow through the series of knife throttles.

Table 6 presents the parameters which were selected for incorporation into the
Design Model. The parameter selection was based on the results of the litera-
ture survey and previous Allison experience. These parameters, which govern
labyrinth seal performance, are illustrated in Figure 4. The more complex
seal geometries are defined in the nomenclature of labyrinth seal geometry.
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Table 6.
Parameters in_the Design Model

Geometric parameters for straight and steppad seals

Knife height (KH)

Knife pitch (KP)

Number of knives (KN)

Knife angle (Ke)

Knife tip thickness (KT)

knife taper angie (KB)

Knife tip Yeading edge radius (KR)
Clearance (CL)

Surface roughness ( < )

OCO0OO0O0OO0OOO0O OO

Additional parameters considered for stepped seais

0 Step height (SH)
o Distance to contact (DTC)
o Flow direction (LTSD or STLD)

Flow parameters

o Overall pressure ratio (Py/Pp)

o Inlet stagnetion pressure (Py)

o Fluid temperature distridution (T,)
‘s 0 Flow rate (w)

A1) local flowstation conditions were assumed to be adiabatic so that the con-
pressible flowrate could be {alculated from the Saint Venant-Wantzel equation,
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Using the isentropic relationship between total and static pressure,
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the mass flowrate parameter can be expressed in terms of the local Mach number,

9 .Y M
¢ = R e 4.3
- 2(y-1)
‘ + I~§—l Hz)

The dynamic loss in total pressure between any two stations can be expressed
by using the appropriate equation in the three element loss model,

- X 2 .
APt = Kc 2 PS M contraction loss 4.4
- Y 2
APt = va > PS M ventury and friction loss 4.5
APt = Ke (Pt - Ps) expansion loss 4.6

The loss coefficients are based on the isentropic flow conditions in the
smailer of the channel areas at the seal station. Equations 4.3 through 4.6
define the vlow characteristic through the seal as a function of seal pressure
ratio. An iterative solution is employed that assumes the mass flowrate until
the specified seal pressure ratio is matched. The contraction loss, venturi
and friction loss, and expansion loss are computed in the sequence of flow for
each knife in series. Corrections are applied to the baseline single-knife
loss coefficients to adjust for the effects of adjacent knives.

A building biock approach was used to derive the loss coefficient correlations.
Starting with the single-knife perfermance, the loss coefficlients were corre-
lated against the independent seal parameters with a multiple regression
analysis. Physically relevant candidate equations were chosen on the basis of
1imit anaiysis. The applicability of tne candidate equations was examined by
comparing their predictive capability against the labyrinth seal performance
data base. The equations which produced the best overall data match were
selected to model each of the three biseline loss coefficients. Then these
single-knife seal performance correlations were extended to include multiple

-

knives in straight seal and stepped seal confiquraticns by applying a similar

regression analysis and data matching procedure.




4.2 SINGLE-KNIFE SEAL MODEL

The correlation of single-knife data affords the advantage of basic loss
phenomena evaluation without the complicating influence of adjacent knives.

The available single-knife data were analyzed for the purpose of characterizing
the contraction loss (Kc) and venuuri loss with wall friction (va).

The expansion losses (Ke) incurred for the single-knife seals were nearly
equal to the entire difference between the total and static pressures at the
throttle discharge due to the very large downstream channel areas relative to
the clearance gap areas. Therefore, the expansion loss coefficient was speci-
fied as unity, Ke = 1.0.

Due to the large area variation between the inlet channel and the clearance
gap, the flow into the knife throat is analogous to that into a sharp-edged
orifice. Here the radius on the leading edge of the knife is the primary
parameter affecting the contraction loss. Using the single-knife data of
Kearton and Keh (31) in which the knife exhibited a very sharp leading edge, a
KC value of 0.7 was found when the venturi loss was assumed to be independent
of the leading edge radius.

with the contractinon loss established, the characteristic of the venturi loss
can be determined as a function of relative knife tip thickness (KT/CL) and
land wall roughness (¢/2CL). The single-knife seals had aerodynamically
smooth lands so that the relationship between knife tip thickness and venturi
Yoss could be found directly, Figure 5. The correlation of va with flow
parameter is equivalent to expressing va as a function of the Mach number
over the knife. A relatively sharp knife (small KT/CL) has a strong influence
on the pressure drop at low Mach numbers, but becomes less effective as the
pressure ratio increases.

Additional sources of single-knife seal data were utilized to establish the
effect of the knife leading edge sharpness on single-knife performance. The
1inear regression analysis of these data resulted in the functional relation-
ship for contraction loss coefficient (Kc) shown in Figure 6. The data
sources are cited in Figure 6.
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= 1.0

Kzf = f(¢,KT/CL)
Figure 5: 0.77 < KT/CL < 3.3, but good for 0.0 < KT/CL < 3.3
[Derived from Kearton and Keh data for Kc = 0.70 (KR very
small)]
[ 0.25 "
Kc@90°=0'7 1. - EXP -C ¢<> +C CL)
where KR - in. from Data Source
0.0 KEARTON & KEH (31)
0.00167 Allison
0.005 KOMOTORI & MIYAKE (37)
0.005 HARRISON (23)
0.010 CAUNCE & EVERITT (13)
Kc = Kc @ 90° for Ko = 90°
Kc KC @ 90° x [1. - C4 (Ke - 90°)] for Ke >90°
(from IDEL'CHIK (27)]
KC = KC @ 90° * C5 (1. - SIN (Ke)] for 30° < Ke < 90°

[from Allison plus MEYER AND LOWRIE data (43))

NOTE: Ko is actual front surface angle relative to the flow direction so that
Ke = 90° + KB/2 when the specified knife angle is vertical or beyond,
Ke > 90°.

C = constant, the value of which is given in the User's Manual
program listing for the Design Model (68).

Figure 6. Loss coefficient correlations for a single-knife seal.
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Contraction losses are affected by the slant angle (Ke) of the knife. The
effectiveness of a knife increases, 1.e., the Kc becomes larger, as the
knife is slanted into the flow (Ke < 90°). Likewise the knife leakage in-
creases, j.e., the Kc becomes smaller, as the knife is slanted backward with

T LT RO Tr e P0RR, TR . S - e
) R s . ..

" the flow (Ke > 90°). The contraction loss coefficient for reentrant knives
in the range 30° < Ko < 90° was correlated from the test data of Meyer and
. Lowrie (43) and Allison. The effect of backward slanted knives was obtained

from a correlation by Idel'chick (27). The modifications to the Kc correla-

tion for vertical knives which correct for a knife taper angle (KB) are noted
in Figure 6.

The physical relevance of the correlation equations can be evaluated best by
comparing the predicted performance of single-knife seals with their measured
performance. An example of the good agreement obtained is shown in Figure 7.
The single-knife seal performance algorithm was the basis for the modei devel-
opment for multiknife straight and stepped seals.

4.3  STRAIGHT SEAL MODEL

The single-knife seal model was extended to multiknife seals by 1inking the
triplet losses for each knife in the series. The overall pressure loss is the
summation of the individual total pressure losses at each knife. The losses
are calculated sequentially starting with the known inlet pressure because the
loss coefficients and Mach number are functions of the local parameter ¢.
For a straight seal, there is a carry-over of the velocity head from ar up-
stream knife. This carry-over through the interknife cavity affects the Kv
and Ke of the upstream knife and the Kc and va of the downstream knife.
Thus, all the loss coefficients of a multiknife straight seal are influenced
by the adjacent knives except the Kc of the first knife and the Ke of the

last knife. The modeling approach followed for multiknife seals was to deter-
mine the three loss coefficients for a given knife location from the single
knife correlations of Figure 11 and then to correct them for the effects of
adjacent knives. The corrections are based on the expansion angle of the
carry-over jet discharging from the clearance gap over a knife. This approach
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has been proposed by Abramovich (1) and utilized by Komotori and Miyake (37)
in their KTK model. The carry-over expansion angle, a, is uefined by the
straight seal schematic in Figure 4. The flow in the jet expands until it im-
pinges on the upstream face of the next knife. The maximum downstream flow
height is (CL + &) so that the expansion area ratio is (CL + é)/CL. The
upper limit of the expansion area ratio, 1 + KH/CL, is encountered with short
knives, with large knife pitch, and after the last knife in the seal. This
jet expansion ratio not only represents the amount the flow expands from the
upstream knife but also the contraction into the downstream knife gap. The
equations for & in terms of a and the other geometric parameters in Figure

4 are:

. I LA

T BTSN

= dr ]

S

for vertical knives (Ko = 90°)
& = (KP-KT)/[Tan KB + (1/Tan a)] 4.1

B 5

for slanted knives (a < K6 < 90°)
§ = (KP-KT)/(Cot o - Cot Ke) 4.8

To incorporate the effects of a on the three loss coefficients, relation-
ships proposed by Dodge (16) were utilized as follows from Figure 3:

SUDDEN CONTRACTION

At '
= [ - —
Ke = K¢ |1 A, o : 4.9

VENTURI WITH FRICTION
A, 1/2 A,
= K! - e V

SUDDEN EXPANSION
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IR The ratios At/A] and At/A2 are simply the ratio CL/(CL + &) relative
' to the upstream and downstream sides of a given knife, respectively.

In general, the expansion angle will vary from knife to knife as the pressure
ratio varies. This was observed in the flow visualization test results. The

from Analysis Model calculations and/or test data.

: expansion angle variation was not modeled, however, because of the lack of 3
B complete seal performance with interknife pressure data. The Design Model
j could be developed to include « variation through the seal based on results <
Y,
3
o

Equations 4.7 through 4.11 were formulated in the Design Model with « as an
. independent variable. Straight seal performance for geometries in the data
! base was calculated for a range of o values. Comparing model results with

the test performance data yielded the average o for each seal configuration.

Y Hal W W RS TRy TN ST RTRT Ea Te HRyy Tr TL e Rm, m e orrEe .
' ' : - oot

E' Figure 8 shows a typical comparison of test data with the model results for

;” : assumed values of a. From this plot, an average a value of 3 deg was

1 . detemined for the tested straight seal configuration. Table 7 summarizes the

g ' range of « values obtained from the various data sources. The a range ob-
tained for the data of Komotori and Miyake (37) compares well with the value

| : of 6 deg reported in a discussion of their paper.

)

i- ’ A linear regression analysis was performed on the a results. The Jet expan-

1 : ston modeling equation obtained is given in Figure 9.

Table 7.
Jet expansion angle (a) for straight seals as determined by correlation.

o Caunce and Everett, 6 knife = 6 - 8 deg
’ o Komotori 2, 4, 8, and 10 knife = 4 - 6 deg
o Allison 4 knife = 2 - 4 deg
a . o Allison 8 knife = 4 -5 deg
5 o Allison 4, 5 knife slanted = 2 - 4§ deg
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Figure 8. Determination of a for straight seals.
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Cg = constant. The value of this constant is given in the User's
Manual program listing for the Design Model (&8).

WALL ROUGHNESS

va = va smooth (Correction for upstream and downstream knives) + K

f rough

N where

Kf rough * f (c/H, Re, KP)

CL + ¢
Ay = Ay smooth( e )

Figure 9. Straight seal correlations in the Design Model.
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The effect of land roughness was included in the model by adding a frictional
head loss term (Kf rough) to the venturi loss coefficient (va smooth)’ A
wall friction loss coefficient (Kf smooth) for a smooth land is the baseline
for va. The flow area in each knife throat was increased to account for

the increase in clearance due to the land roughness. An explicit equation for

the Fanning friction factor was obtained from regression analysis:

-6
6.02 - 138.41 °‘3°H 10
af = - 4.12

-6
0.825 Tog,, [IO/Re + .2 {e =300 10

H
where 4f > 0.

This equation is similar in form to the implicit equation for transition flow
in rough conduits that was proposed dy C.F. Colebrook. The frictional head
loss coefficient was determined as

(&f

4f 4.13

K¢ rough = *'rough ~ smooth’ /"

where H = 2 CL

The knife-to-knife flow analysis was maintained by utiiizing a rough wall
length equal to the knife pitch of the downstream knife. Consequently, the
rough wall length for the last knife is equal to the knife tip thickness.
Figure 9 outlines the modeling for wall roughness. Figure 10 shows a compari-
son of model results to test data for a rough straight seal land and a corre-
sponding smooth land. The mode)l accurately accounts for the effect of rough-
ness for the seal geometry evaluated.

Comparisons of Design Model predictions with the straight seal test data show
that, based on overall average, the model is accurate within + 5%. Figure 1

is a typical example of these comparisons.

Table 8 summarizes the model deviation from the test data for the single-knife
and multiknife straight seals in the data base.




Table 8.
Design Model error results for straight seals.

Number of Avg. Error*
Type Source Configurations (%) )

Single Kearton & Keh 3 1.4
knife Caunce & Everitt 6 1.2

Komotori & Miyake 1 1.8

Allison

(including slanted knives) 8 3.5
Muitiple Caunce & Everitt 4 3.5
knife Komotori & Miyake 12 4.3

Harrison 13 5.9

Allison

(including slanted knives

and roughened lands) 26 4.6

Al 13 4.2

*Average error {s the arithmetic mean of the average deviations between model
and test data.
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4.4 STEPPED SEAL MODEL

Stepped seais are designed to minimize the dynamic pressure recovery from one
knife to the next by disrupting the velocity carry-over. Accordingly, the
straight seal model approach which correlated the jet expansion angle in terms
of cavity dimensions has limited physical applicability to stepped seals. The
test data show that stepped seals fiow both more and less than comparable
straight seals depending primarily on the operating clearance. Consequently,
a more comprehensive model is required to account for the influence of the
additional geometric parameters of step height (SH) and distance-to-contact
(DTC) which affect the performance of STLD and LTSD stepped seals differently.

Physically, the flow between knives in a stepped seal does carry-over some of
the velocity head to the next knife. But while the intervening flow path dis-
sipates a large part of the velocity head, it also affects how the flow enters
the next knife and, thereby, influences the loss coefficients of that knife.
The complex flow patterns involved would make correlations for corrections to
the individual loss coefficients difficult to determine accurately. Conse-
quently, a different approach was taken to include ail of the diverse flow
distortion and loss mechanisms into a single area correction factor (XMUL) for
a knite throat downstream of a step. This factor is a multiplier on the flow
area and can be less than or greater than unity. It accounts for carry-over,
additicnal pressure loss in the flow turning between the knife face and step,
which is important for small distances to contact (0TC), and flow distortion
into the next knife throat.

The sasic model for stepped seals assumes that the flow behaves as if it were
passing through a series of single-knife seals. Correlations for XMUL were

A ¢btained through a procedure similar to that followed to evaluate a for
straight seals. For a range of XMUL values performance predictions were
calculated from the Design Model for the stepped seal configurations in the
data base. A comparison of these results witih the test data yleldea the re-
quired XMUL value for each configuration. Figure 12 shows a typical comparison
piot. The area multiplier (XMUL) was found to vary from 0.55 to 1.32. A cor-
relating equation for XMUL in terms of the influential geometric parsmeters
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was derived using a multiple linear regression analysis. Stepped seals with
STLD flow direction, backward facing stator steps, were ana]yzed first because
of the larger data base (62 configurations). A correlation for the LTSD flow
direction was obtained from comparisons of the STLD equation to the LTSD test
data (15 configurations). A correction equation based on the comparable STLD
stepped seal was derived. This approach provided the best extrapolation of
the narrower parameter ranges for the LTSD stepped seal data. Figure 13 gives
the STLD and LTSD correlations for XMUL and their respective parameter ranges.

Roughened land surface effects for stepped seals were handled in the model
with a procedure similar to that developed for straight seals, i.e., adding a
friction head loss term (Kf rough) to the va for a smooth wall and in-
creasing the throat area by the amount of the roughness. The effective length
of the rough wall was taken equal to the knife tip thickness because the steps
induce significant flow separation in the interknife cavities. This wall

friction model produces good agreement with the test data.

Figures 14 and 15 show typical comparisons of model results with test data in
the data base. The Design Model devtations from the test data are summarized
in Table 9 for all of the stepped seal data in the data base. The disagree-
ments between test data and Design Model predictions are within +5%.
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STEPPED SEAL AREA MULTIPLIER, XMUL

STLD Flow Direction

‘s ) “10
XMUL = Co (DTC/CL) ¢KT/CL) @ (oTe/(kpkT)) ¥ (ki/cL) O v

th 12 3
.o« ((KPKT)/ZKH) V1 (sH/CL) ﬁ\/fuTC/CL) + G4

0.85 < DTC/CL < 40, 0.21 < KT/CL < 2.6, 0.09 < DTC/(KP-KT) < 1.0,
5.1 < KH/CL < 19.4, 1.16 < (KP-KT)/KH < 1.76, 2.0 < SH/CL < 29.4

LTSD Flow Direction

c

XMUL = XMUL (KH/CL) '3

C

STLD 14

4.0 < DTC/CL < 19.4, 0.50 < KT/CL < 1.5, 0.35 < DTC/(KP-KT) < 0.50
5.1 < KH/CL < 28, 1.02 < (KP-KT)/KH < 1.9, 4.0 < SH/CL < 12.5

Note: The limits on the seal parameters result from the range of the seal
geometries used in developing the correlation equations.

WALL ROUGHNESS

va N va * Kf rough

K¢ rough = fle/Ms Rey KT)

A CL + c
t*© t smooth

Figure 13. Stepped seal correlations in the Design Model.
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Figure 14, Design Model compared to Allison test data for a
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Figure 15. Design Model compared to Allison test data for a
stepped seal with a rough land.
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Table 9.

| s

A Design Model error results for stepped seals.
- 4
i I
?e '
‘$ ‘ . Number of Avg Error*
é; | 1 Type Source Configurations (%)
S
y - Multiple knife Caunce & Everitt 44 2.9
E (STLD only)
-ﬁf . Harrison 8 5.3
N (STLD only)
- DDA
STLD data 9 4.0
LTSD data (includes 24 4.8
roughened land)
Both 33 4.6
ATl 85 3.8
. *Average error is the arithmetic mean of the average deviations between model

and test data.
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4.5 DESIGN MODEL COMPUTER PROGRAM
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The Design Model for calculating the flow through labyrinth seals has been
coded in Fortran IV language for rapid and comprehensive computations. The
one-dimensional compressible flow equations satisfactorily represent the flow
in the knife throats when they are coupled with empirical relationships for !
f_"“w“mhwm_nthewlossucoeffjcientsTHHIhismsemikempirical-aﬂa%ys%3wa+90wgives~the“préssure

o distribution through the seal. The model accurately predicts straight and
stepped seal leakage within +5% for a wide range of seal parameters encountered
in gas turbine engines. Since the model considers one knife at a time, non-
constant geometry seals, e.g., different clearance at each knife tip, can be
considered. Nonconstant seal geometry can accommodate mixed straight and
stepped configurations in a single seal.

G AT

Features available in the Design Model code include:

0 abbreviated input where possible

o override available for many of the loss coefficient parameters

o function loss can be specified instead of or in addition to the three
loss coefficients

o nonconstant geometry straight and stepped seals, or a mixed combination
of the two, can be considered .

o calculations for two-dimensional (rectangular) seals are possible to
simulate some static seal rigs.

o calculation options are available:
pressure distribution for a given flow rate.

pressure distribution and flow rate for a given overall pressure ratio.
flow characteristic curve (¢ versus PR).

Gl

RS TS L Y,

W | LT

> T

TEIET

oy T,

B2 fr s

A comprehensive description of the structure, capabilities, and use of this
computer code is presented in Reference (68).
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A Design Model verification test was made with previously untested stepped
seal hardware. This seal configuration was not part of the data base used to
derive the Design Model. The vertical knife stepped seal was tested in the
STLD configuration statically and dynamically at 246 and 492 ft/sec average
knife tip speeds. The measured performance and the performance predicted by
the design model are plotted in Figure 16. Table 10 compares the design model

performance predictions with the test data.. The correlation between measured
and predicted seal performance was within one percent throughout the pressure
ratio range tested. Although this was a single point check, the predictive
capability of the Design Model within the limits specified for the labyrinth
seal parameters is expected to be within +5% of the true value for conventional
seal configurations at clearances greater than 0.005 in.

Table 10.
Comparison of the verification test results with the
Design Model performance prediction.

1/2
1]

PU/PD ¢ - 1bm R b | p 3
1bf sec R
verification test

Design Mode) static condition (V.7.)

1.0 0 0

1.25 0.1508 182 -0.8

1.50 0.1857 187 -0.7

2.00 0.2142 .216 -0.8

3.00 0.2318 234 -0.9

4.50 0.2379 (.237)* (+0.4)

Average -0.8

*Extrapolated from elliptical coordinate plot of the measured data. Not
included in overall average.
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5.0 LABYRINTH SEAL DESIGN OPTIMIZATION

The Design Model is a performance analysis tool for a specified labyrinth seal
geometry. The seal designer often needs to solve the inverse problem: con-
figure a seal to minimize the leakage for a particular application. The seal
design is generally constrained by installation and fabrication limits. Con-
sequently, the haphazard selection of candidate seals from among the myriad
possible designs on the sole basis of experience criteria will seldom result

in a "best" choice. However, mathematical optimization theory provides a reli-
able and efficient iterative procedure for determining the best seal design.

5.1 OPTIMIZATION ALGORITHM

The optimization of a seal geometry from the performance predictedvby the De-
sign Model requires the maximization of nonlinear functions of the independent
variables, which are subject to nonlinear equality or inequality constraints.
The nonlinear constrained optimization is transformed to an unconstrained
problem through the use of a penalty function. Then the variable metric meth-
od of Fletcher-Power-Davidon is used to solve the probiem. This approach ap-
plies to continuous variables and is reliable even for erratic functions that
are frequently encountered in design problems. '

Oiscrete variables, e.g., the type of seal, the number of knives. and the flow
direction, are also encountered in the optimization problem. The algorithm
performs the continuous variable optimization for each set of discrete vari-
able values. Then the individual optimum designs are compared to determine
the overall optimum seal design.

Constraints have been included in the algorithm to ensure that the optimized
seal configuration satisfies the design requirements. Constraints on the dis-
crete variables simply limit the matrix of values considered in the trial and
comparison procedure. Constraints on the continuous variables are imposed by
adding inequality penaity functions to the functions being optimized. A
penalty function equals zero if the design meets a given contraint. It is
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greater than zero if the constraint is violated, and the penalty varies para-
bolically with the magnitude of the violation. Each continuous variable con-
straint has one ;- ~1ty function associated with it.

A driver routine has been programmed for the Design Model code which calculates
the independent parameter values to be evaluated in the search for an optimum
configuration. This driver automates the procedure of: (1) determining the
overall design constraints, (2) selecting the allowable range of each parameter
to meet design and model constraints, (3) using the Design Model to calculate
the leakage flow rate for a matrix of possible seal configurations, and (4)
optimizing the seal design from the performance matrix, i.e., finding the seal
geometry with the lowest leakage.

5.2 OPTIMIZATION CAPABILITIES

Three types of parameters are involved in the seal optimization process: (1)
input parameters which are held at specified constant values during the opti-
mization, (2) optimized parameters which will define the unique best seal con-
figuration, and (3) constraining correlation parameters which limit the para-
metric search to the Design Model envelope. The optimization of & seal design
can consider a matrix of these parameters 1isted in Table 11. Input parame-
ters have constant values imposed by the operating environment of the sealing
appiication or by physical limitations of the design or fabrication processes.
The parameters defining a maximum seal geometry envelope, i.e., Lmax and

Hmax' are optional and should be stipulated only 1f the space allocated to

the seal is limited. The optimized parameters are either continuous or dis~
crete functions. Each discrete parameter defines an optimization matrix which
is solved by the variable metric method. The optimum soluttons for each dis-
crete parameter are compared to obtain the best seal configuration. The con-
straining correlation parameters 1imit the selection of the best seal design
so that the parametric correlations in the Design Model are not extrapolated
beyond their reliable range. Alternative constraints can be superposed on the
optimization by the input of minimum and maximum values for the continuous and
discrete optimized parameters. These additional constraints are arbitrary and
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optional, similar to the use of the overall seal length and height specifica-
tions. If the program limits on an optimized parameter are not overridden by
input data, the constraining 1imits are set by default to the code values.

Table 11.
Design Mojel optimization parameters.

Input Parameters Optimized Parameters
Straight and Stepped Seals Continuous Variabies
Clearance (CL) Knife height (KH)
Temperature (T) Knife pitch (KP)
Inlet total pressure (Py) Knife tip thickness (KT)
Pressure ratio (Pg) Knife angie (Ke)
Knife radius (KR) Roughness (¢)
Knife taper angle (Ki) Step height (SH)**
Maximum axial length {Lpgyx)*
Stepred Seals Only Discrete vVariables
Maximum seal height (Hpax)* Seal type (straight, stepped)
Distance to contact (DYC) Number of knives (KN)
Maximum or minimum diameter (Omax. Omin) Flow direction (LTSO, STLD)**

Minimum knife pitch (KPpyp)
(= 2X maximum allowable axial travel)

*Optional
wxStepped seals only

Constraining Correlation Parameters

Strafght Seals Stepped Seals
KT/CL XT/CL
xe Ko
(KP-KT)/KH {KP-KT)/Kdl
(¢ - 30)7CL DIC/CL
SH/CL
KH/CL
(¢ - 30)/CL
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The optimization code capabilities can be summarized as follows:

o Constant geometry straight and stepped seals can be considered. However,
variable parameters from knife-to-knife or mixed straight and stepped seal
geometries cannot be optimized.

L
{
]

o An optimum configuration may be determined for dboth seal types and for

both flow directions through the stepped seals. Any subset of these may
be considered.

. o Each independent parameter has a default range which may oe averridden.
i § Even the correlation parameter ranges may be overridden if desired.
x

} o An independent parameter may be held constant (by inputting both its mini-
\ E mum and maximum values equal to the one desired).

o Before optimization is attempted, the parameter vilues and ranges are
! checked to be sure a solutfon is possible, e.g., a solution is impossikle
R K if Lmax is Yess than the minimum KP divided by the maximum KN, If a

solution does not exist, information is printed describing the problem,
and the execution of the data set is halted.

o Intermediate output information is given for each combination of discrete
vartables employed. This output information includes cigorithm parameter
values, derivatives of the optimized function with respect to each con-

tinuous variable, and comparisons of the continuocus variabie values with
the allowable ranges.

o Final output information includes sensitivity results for eath discrete

variable step and summary data for the optimum seal configuration desig-
nated.
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The output information not only defines the optimum seal configuration but in-
dicates the effect, if any, of imposing each constraint. Also, the improve-
ment in decreased leakage of the optimum configuration compared to the other
possible configurations is given. This information can be used to assess the
penaity caused by each limiting ccrstraint and the penalty for choosing an

alternate design.

A detailed description of the optimization algorithm and its use with the
Design Model code can be found in the User's Manual (68). A sample input file

and the resulting optimum seal configuration output are included.
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6.0 LABYRINTH SEAL EXPERIMENTAL INVESTIGATION

The labyrinth seal rig tests were designed to extend the ranges of geometric
parameters in the data base for the design model development, to provide veri-
fication of the capabilities of both the Design Model and the Analytical Model,
and to substantiate the physical reality of the flow-field structure calculated
by the Navier-Stokes analysis model. The bulk of this seal performance test-
ing was done in the two-dimensional (2-D) static rig. This rig was also uti-
1ized as the test section for schlieren flow visualization ard flow field
velocity measurements in large-scale seal models. Supporting performance tests
were made independently with intracavity pressure and temperature instrumenta-
tion. A preogram to characterize the leakage performance of typical straignt
seals and stepped seals with open-cell honeycomb lands was run statically and
dynamically in the three-dimensional (3-0) test rig. The effects of knife ro-
tation on full-scale straight seals with smooth and rough lands were fnvesti-
gated using intracavity pressure instrumentation. Verification tests were run

on the 3-D dynamic rig with 3 seal configuration which had not been previously
tested.

6.1 TEST RIGS AND PROCEDURES

Two complementary test rigs were used to acquire the variety of data required
1o support the development of the analytical models. A cost effective two-
dimensional (2-D) static rig was employed to obtain the seal performance data
for the full-scale models of straight and stepped seals under the influence of
geometric and land surface roughness varfations. This 2-D rig was alsu used
to study the internal details of the labyrinth seal flow through large-scale
models which were also suitable for flow field velocity measurements with hot-
wire aremometers and for (low viszualization with a schlieren technique devel-
oped specifically for the purpose. A three-dimensional (3-D) dynamic rig was
used to investigate the performance perturbations imposed by rotating knives
next to several different land materials with annular clearance gaps. The
following sections describe the test equipment and instrumentation uttlized to
obtain these data.
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6.1.1 2-D Static Rig

The terminology, 2-D (two-dimensional) static test rig, is based on the seal
models which are installed in the rectangular test section. These models do
not simulate the effects of seal curvature or rotation and involve small end-
wall effects. However, the high aspect ratio test section, 6.28 in. wide,
minimizes these end effects.

Building block, adjustable seal hardware is used to obtain versatility and
muitiple use of components. Individually adjustable knife and land sections
can produce continuous changes in the primary geometric variables of straight
and stepped seals in a cost effective manner. The features incorporated in
the rig design, Figure 17, allow one set of knife hardware to cover the con-
ventional range of variation in:

o knife ¢learance

o knife pitch

0 knife height

o number of knives

o step height

o distance-to-contact (axial clearance)

The maximum test envelope will accommodate a seal length of 2.0 in. This
test section will allow a considerable number of straight seal knives (depend-
ing on pitch) and stepped seal knives to be tested at full-scale over a com-

plete range of clearance encountered in small and large high-temperature air-
craft engines.

Figure 18 shows a close-up view of the 2-D rig test section with a four-knife
stepped seal installed. Each knife and each land are an individual horizontal
piece and can be adjusted in an axial direction relative to adjacent pieces to
make arbitrary changes in the pitch. Step height can be varied by inserting
shims (not shown) between adjacent knife and land sections. The knife pitch
and axial seal clearance (DTC) can be easily changed with the cdjustment
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Figure 17. Two-dimensional (2-D) labyrinth seal air test rig installation.

screws as shown in Figure 18. Vertical clearances between the corresponding
lands and knives can be varied by clearance shims as noted. Changes in knife
height are accomplished by filling the knife cavities with low temperature
pattern wax. The number oY knives are easily variable by removing or adding
corresponding knife and land sections. For vertical knife seals, the flow di-
rection through the seal can be changed by reversing the knife and land found-
ations. Changes in knife angle and land contour do require different hardware.

Figure 19 shows a close-up view of a four-knife straight seal installed in the
2-D test section. The straight-seal assembly is similar to, but simpler than,
that for the stepped seal since one land section is required. Spacers between
knives, with specific height and thickness dimensions, are used to adjust knife
pitch and height in the straight seal.
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The 2-0 rig installation permits aerodynamic evaluation of seal performance to
a seal inlet pressure of eight atmospheres at room ambient temperature. The
test condition range and the local Mach iwumbers encountered in the seal flow
1imit pressure and temperature variations in air to compressibility factors,
1= PS/Rt. near unity. The desiccated air supply prevents the possibility

of variation in the test fluid due to composition changes and removes any
chance of condensation shocks. The rate of change of thermal characteristics,
cp and vy, for air is small in the ambient temperature range. Therefore,

the 2-D rig test environment enhances the accuracy and generality of the data
reduction procedures. The primary modeling variable which is not controlled
is Reynolds number, which varies primarily with seal model scale.

The rig normally discharges to the atmosphere outside the test cell through a
5.76 in. inner diameter (I1.0.) pipe which creates less than 0.2 psi pressure
loss.

The flat plane walls forming the rectangular test section of the 2-D rig ex-
perience small structural deflections which can result in clearance changes
under high air pressure loading. A micrometer dial gauge (see Figure 20) with
0.00002 in. readability is mounted on the top plate to monitor the relative
movement of the seal knife hardware, which is indicated by the vertical travel
of the follower pin.

The 2-D rig allows an extensive survey of seal geometry and material effects
on performance to be accomplished expeditiously at minimal costs in hardware

fabrication, manpower, and schedule.

6.1.2 2-D Rig Modified for Flow Visualization

Aluminum side plates with 5.5 in. x 3.5 in. x 1/2 in. thick plate glass windows
at the seal mode! viewing location, were substituted for the standard steel
side plates used in normal performance testing, Figure 21. These two matching
side plates were made for use with the schlieren optical imaging technique and
a laser doppler velocimeter (LOV) system. The side plate windows are limited
to a pressure difference of 15 psi, but this pressure level is adequate for rig
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testing with large-scale models. The conventional pressurized inlet plenum
was employed for some of the schlieren testing, but better flow visualization
and flow field velocity measurements were obtained with an atmospheric inlet
and discharge evacuated by a steam ejector. Pressure ratios to 3.5 were ob-
tained within the structural limits of the window glass with this pump-down

arrangement.

Intraseal instrumentation requirements and flow visualization limitations
placed constraints on the minimum model scale for the seal. The relatively
small dimensions of the fuil-scale seal models prohibit accurate visualization

of local flow-field phenomena. Therefore, a %ten times (10X) full-scale seal
model size was selected as the largest scale reasonably accommodated by the 2-D
rig and air supply. Additional constraints on step height 1imited the size of
stepped seal models to five times (5X) full-scale. C(lassical flow similarity
theory governed the design which preserves the ratio of pressure forces to
inertia forces and compressibility effects at the expense of vartations of the
ratio of viscous forces to inertia forces. Then the observations and measure-
ments of the fluid dynamics in the large-scale seal will be comparable to

those in the full-scale seal when flow similarity is independent of Reynolds
number,

6.1.3 3-D Dynamic Rig

The terminology, 3-D (three-aimensional) dynamic test rig, is based on the
circular geometry of the seal models. The test seals typically have a maximum
diameter of 6.00 in. and can be run at rotational speeds to 30,000 rpm for the
simulation of actual engine applications. TYhe 3-D rig rotor is driven by an
impulse turbine with speed control that is independent of the seal inlet pres-
sure. Therefore, static performance (at O rpm) and the influence of knife tip
speeds up to 785 ft/sec can be evaluated over a range of seal pressure ratio
from 1.0 to approximately 0.32/1J~3Ii Figure 22 shows the 3-D rig installed
in the research test facility. The principal subassemblies are identified in
figure 23.
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The seal knife geometry is normally tested on the rotor which is a unique com-
bination of knife angle, number of knives, pitch, and knife height for a given
flow direction and step height in the case of stepped seals. The matching
stator is designed for a single clearance and can be reversed for the large-to-
small diameter (LTSD) and the small-to-large diameter (STLD) flow direction
testing in the case of stepped seals. Similarly, vertical knife stepped seal
rotors can be tested in both flow directions. The distance-to-contact (DTC)
for stepped seals or knife position over the land, as in the case of straight
seals, can be varied by inserting shims behind the stator housing.

6.1.4 Test Rig Instrumentation

Comparable air temperature and static pressure instrumentation are used to
determine the seal leakage performance in both the 2-D static rig and the 3-D
dynamic rig. The 3-D rig employs additional temperature and static pressure
instrumentation to define the tubine power produced during dynamic operation.
Oynamic testing also requires some electronics to record rotor speed and to
monitor two-degrees-of -freedom vibration levels at the seal test and turbine
drive sections. Both rigs have been modified to accept {nstrumentation within
the seal model.

6.1.4.1 2-D Rig Instrumentation

The instrumentation locations for the 2-D rig are shown schematicaliy in Figure
24, Airflow through the seal model is determined with a standard ASME square-
edge orifice with static radius taps.

Static pressures are measured upstream and downstream of the airflow orifice,
at the seal inlet plenum, and at the seal downstream plenum. Al) of the
large-scale seal models were instrumented with static pressure taps of 0.020
in. diameter located on the longitudinal centerlines of the knife-tips well
away from any sidewall influence. Additional cavity static pressures were
installed at appropriate axial locaticns in the same longitudinal plane.
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Atr yemperatures upstream of the airflow measuring orifice and ypstream of the
¢ea) model are measured with shielded 1ron»constantan (1.€.) thermocoup\es‘
Two 1.C. thermocouples are jgcated downstream of the sea) model: one therwms-
couple in the downstream pionum of the test section and one Lhermocoupie in

the exhaust pipe. A1l of the \arge-sca\e ceal wodels were instrumanted with

addﬂtiaaa\ 1.C. thermncoup\e& 1o measure alr temperatures in the cavities and

in the velocity carry-over jets. The cavity thermocauples wore D3rs t1ipped.
The carry-over thermocoupies were shrouded and aspirated. A1l of the thermo-~

couples were 1ocated out of ling with the statle pressure taps ‘o provide

reasonable ysolation from wake spreading.

6.1.4.2 3-D Rig 1astrumentatiaﬂ

The 1nstrumentati0n locations Fof the 3-0 rig are shown schematica\ly in flgure

25. The airflow conditions required to define the cral leakage performance in

the 3-D rig are the samd a5 thuse required 10 the 2-D rig.
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Figure 25. TYyplical three-dimensional dynamic seal test
rig instiumentation.

A larger diameter ASME square-edge orifice is required for the 3-D rig which
will pass three times the airflow rate as a similar 2-0 rig seal configuration
under the same pressure ratio.

The labyrinth seal upstream pressure is sensed on the diffuser wall well away
from the local acceleration of the flow entering the seal and away frum the
vortex pumping of the rotor. The upstream 1.C. thermocouple is deeply immersed
near the axis of rotation of the 3-D rig rotor. The seal downstream pressure
and temperature measurements are made in the discharge jet from the seal.

Five static pressure taps of 0.020 in. diameter were positioned in the smooth
and -ough stators, halfway between the knife tracks of the four knife straight

n



seal, and on the same spacing ahead of and behind the rotor. No intraseal
pressure instrumentation was installed in the stepped seal models or in the
honeycomb seal models.

Additional data for the airflow conditions in the turbine section of the 3-D
rig are necessary to define the power delivered to the rotor during dynamic
testing. The turbine airflow is measured in the supply line with a standard
ASME thin-plate, square-edge orifice. One additional thermocouple is required
to measure turbine orifice inlet temperature.

Several operating parameters are monitored to ensure proper and safe dynamic
testing in the 3-D rig. The most important of these from the standpoint of
good performance measurement is the static pressure in the rotor thrust
balance cavity. Here the thrust bearing load is controlled, which is crucial
to valid power absorption data. Lubrication system pressures and temperatures
are monitored as a safety precaution.

6.1.5 Data Reduction and Calculation Methods

The leakage performance of a labyrinth seal correlates on the airflow
parameter,

wv Ty

® " by At

as a function of the seal pressure ratio, PU/PD' in the absence of Reynolds
number or heat transfer effects. When the discharge pressure and inlet air
temperature are approximately constant, the test Reynolds number is invariant
at a given rressure ratio. The test air is delivered at essentially ambient
temperature. The heat transfer influences are also minimized by the ambient
temperature test fluid. The seal throat area is corrected from tne buildup
clearance measurements for rig case deflections in the 2-D rig and for rotor

growth at dynamic conditions in the 3-0 rig.
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The data repeatabiiity of the 2-D rig and the 3-D rig is typically +3%. Cor-
relations between test results from the 2-D rig and the static 3-D rig are
good with the principal variations attributable to the clearance area change
through the stepped seal hardware for the 3-D rig.

When the local envirorment of an engine labyrinth seal is known in terms of air
temperature (TU) and the hot running clearance of the seal is specified so
that the flow area can be calculated (At)' then a unique iterative solution
for compatible leakage flowrate (w), upstream pressure (PU). and downstream
pressure (PD) is defined by the generalized seal performance curve

(ww[?G?PU At versus PU/PD) in conjunction with the other restrictions

in the seal flow circuit. The potential errors incurred by the extrapolation
of this room temperature and barometric discharge pressure data to higher
temperature and pressure engine environments are a function of Reynolds number
and heat transfer effects. Generally, Reynolds number is most strongly in-
fluenced by model scale rather than kinematic viscosity of the air. Ordinarily
heating of the seal leakage is infliuenced by rotor windage, seal pumping, and
environmental heat transfer. Modeling of these secondary variables would re-
quire a full-scale engine seal with actual simulation of the thermal and pres-
sure environment or an analytical model with this theoretical sophistication.
The complication and expense of such rig testing makes the performance gener-
atizing procedure the most feasible empirical approach. The Navier-Stokes
Analytical Model could be used to calculate correction factors for Reynolds
number and heat transfer effects in much the same manner that specific heat
and humidity corrections have been developed for turbine engine performance
parameters through aercthermodynamic cycle analyses.

6.2 PERFORMANCE TESTS ON FULL-SCALE LABYRINTH SEAL MODELS

Performance teits were run on selected full-scale models of straight and
stepped labyrinth seals to extend the range and distribution of the geometric
parameters for the Design Model data hase, to evaluate the Design Model pre-
dictions for straight seal configurations outside of the conventional range of
interknife cavity geometry, and to characterize the effect of open-cell honey-
comb lands on the performance of straight and stepped seals.
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One of the objectives of the literature survey was to identify the geometric
parameters which affect the performance of labyrinth seals and to determine
their ranges of appiication in the gas turbine industry. These parameters for
straight and stepped seals are summarized below:

KN number of knives
Ke knife angle '

%{ relative knife tip thickness
KE ive knife pitch
cL relative knife pitc

KH

cL relative knife height

Es interknife cavity aspect ratio

£
200 land relative roughness

for stepped seals only

%% relative step height

(=]
v—d

¢

I

relative distance to contact

o

L

STLD
or flow direction
LTSO

The tests required to fi11 voids in the available data base matrix were planned
on the basis of these generalized geometric parameters. The performance data
used in the multiple linear regression analysis for the Design Model develop-
ment were correlated with seal geometry defined by these parameters.

A significant reduction in the number of tests required for the formulation of

a comprehensive design mode)l was made possible by the application of statisti-
cal analysis to model theory for compressible flow similarity.
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6.2.1 Design Model Data Base Extension

Twenty-three performance tets were made over pressure ratios to 6 in the 2-D
static labyrinth seal test rig. Of these, twelve were straight seal tests
and eleven were stepped seal tests to augment the data base for the develop-
ment of the Design Model. Table 12 lists the geometrical details of the seal
configurations and the data voids filled by the tests. The performance data
from each of the tests are presented graphically in Appendix B.

6.2.2 Effect of Interknife Cavity Aspect Ratio in Straight Seals

Komotori and Miyake (37) contend that an optimum interknife cavity aspect ratio
exists for straight seals near a KP/KH.4. The earlier testing at Allison in-

dicated a minimum straight seal leakage when the interknife cavity was square.
The compilation of these somewhat conflicting empirical results into the data
base for the Design Model was certain to skew the predictive capability away
from the measured performance of the individual tests in the set. Consequent-
ly, an evaluation program was conducted to determine the capability of the De-
sign Model to predict the performance of straight seals that were not in the
data base which have a range of interknife cavity aspect ratios, 0.4 < KP/KH <
4.0. A nominal envelope of relative seal geometries was covered by varying
the clearance between 0.005 in. and 0.020 in. and testing two and four

knives. Eighteen configurations of straight seals with vertical knives were
tested in the 2-D rig. The geometric parameters of each test are listed in
Table 13 with the evaluation of the Design Model prediction at a seal pressure
ratio of 2.0. The plots of the seal performance measured and predicted are in
Appendix C.

From these tests it was concluded that:

0 the Design Model predicts the flow parameter ¢ too high for low
interknife cavity aspect ratios, KP/KH < 1.0,

0 the Design Model predicts the flow parameter ¢ too high for small
clearance, CL = 0.005 in.

15
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Table 13.
Effect of KP/KH, KN, CL on vertical knife straight seals at PU/PD = 2.0.

Test KN KT KH KP CL ¢ M ¢DM/¢T
No. in. in. in. in. Test Design
- _ Model
* 1 2 0.010 0.110 0.044 0.005 0.327 0.445 1.361
2 2 0.010 0.10 0.044 0.010 0.400 0.45 1.128
3 2 0.010 0.110 0.044 0.020 0.418 0.455 1.089
4 4 0.010 0.110 0.044 0.005 0.314 0.415 1.322
5 4 0.010 0.110 0.044 6.010 0.375 0.435 1.160
6 4 0.010 0.110 0.044 0.020 0.414 0.448 1.082
7 2 0.010 0.110 0.220 0.005 0.302 0.349 1.156
8 2 0.010 0.110 0.220 0.010 0.346 0.352 1.017
9 2 0.010 0.110 0.220 0.020 0.357 0.374 1.048
10 4 0.010 0.110 (.220 0.005 0.232 0.269 1.159
N 4 0.010 0.110 0.220 0.010 0.268 0.217 1.034
12 4 0.010 0.110 0.220 0.020 0.304 0.306 1.007
13 2 0.010 0.110 0.440 0.005 0.275 0.333 1.2
14 2 0.010 0.110 0.440 0.010 0.325 0.328 1.009
15 2 0.010 0.0 0.440 0.020 0.325 0.335 1.03
16 4 0.010 0.110 0.440 0.005 0.182 0.249 1.368
17 4 0.000 0.110 0.440 0.010 0.236 0.243 1.030
18 4 0.010 0.110 0.440 0.020 0.243 0.254 1.045

o the Design Model predicts the flow parameter ¢ very well at high
interknife cavity aspect ratios, KP/KH > 1.0.

o the Design Model predicts the flow parameter ¢ very well for large
clearances, CL > 0.010 in,

These test data imply that the minima predicted for the flow parameter of
straight seals near a clearance of 0.010 in. may not exist, or at least occurs
at a clearance less than 0.005 in. This abberation in the Design Model may be
due to the difficulty in determining the actual clearance in seal models that
are tested at clearances of 0.005 in. and less. The experimental uncertainty
in seal data at small clearances is significantly greater than that obtained
at clearances of 0.010 in. and greater.

6.2.3 Effect of Open-cell Honeycomb Lands in Straight and Stepped Seals.

Limited experimental data acquired during a NASA sponsored program (54)

indicated that in four-knife straight seals:
11




o honeycomb reduced leakage at large clearances,
o honeycomb increased leakage at small clearances,
o small cell size showed the least sensitivity to clearance.

A single test with an advanced four-knife stepped seal suggested that severe
leakage penalties might be associated with the use of open-cell honeycomb in
stepped seals. A slanted knife straight seal which was tested during an IR&D
program showed that this seal leaked more with open 0.062 in. cell honeycomb
than a similar straight seal with vertical knives. Oynamic testing with open-
cell honeycomb lands in straight or stepped seals revealed a characteristic
where leakage increased with knife tip speed, which is contrary to experience
with solid-smooth lands. The apparently anomolous behavior of labyrinth seal
Yeakage with open-cell honeycomb lands stimulated an interest in acquiring
enough additional performance data to verify or refute the earlier
observations.

The objective set for this program was to experimentally quantify the flow
characteristics of straight seals with vertical and slanted knives over a
conventional range of knife tip clearances. Three honeycomb cell sizes were
investigated in the 3-0 dynamic test rig, Table 14.

A sample of stepped seal performance was obtained with 0.062 in. open-cel)
honeycomb lands to verify the surprisingly high leakage rate observed during
the NASA program. Vertical and slanted knives in both STLD and LTSD flow
directions were tested in the 3-0 dynamic rig as outlined in Table 15.

The data acquired from testing the five-knife straight seals are in excellent
agreement with the previous NASA data, Figure 26. The performance ratio of
honeycomb lands with respect to a baseline solid-smooth land provides a means

for estimating the performance of labyrinth seals using honeycomb lands from
the performance predictions of the Design Model. The test data from the

vertical knife straight seals are compared with the predictions of the KTK
model in Figures 27, 28, and 29. The Design Model! performance correlated best

18




Table 14.
Performance tests on honeycomb lands in straight labyrinth seals.

Test Ke KN KT-in. KP-in. CL-in. X-in. b-in.
1 90° 5 0.010 0.100 0.005 0.0 0.075
2 90° 5 0.010 0.100 0.005 0.062 0.075
. 3 90° 5 0.010 0.100 0.005 0.125 0.075
4 90° 5 0.010 0.100 0.005 Solid Smooth
5 90° 5 0.010 0.100 0.010 0.0 0.070
6 gQ° 5 0.010 0.100 0.010 0.062 0.070
7 90° 5 0.010 0.100 0.010 0.125 0.070
8 90° 5 0.010 0.100 0.010 Solid Smooth
9 9Q° 5 0.010 0.100 0.020 0.0 0.060
10 90° 5 0.010 0.100 0.020 0.062 0.060
N 90° 5 ¢.010 0.100 0.020 0.125 0.060
12 9Q° 5 0.010 0.100 0.020 Solid Smooth
13 70° 5 0.015 0.100 0.005 0.0 0.075
14 70° 5 0.015 0.100 0.005 0.062 0.075
15 10° 5 0.015 0.100 0.005 Solid Smooth
16 70° 5 0.015 0.100 0.010 0.0 0.070
17 10° 5 0.015 0.100 0.010 0.062 0.070
18 10° 5 0.015 0.100 0.010 Solid Smooth
19 10° 5 0.015 0.100 0.020 0.0 0.060
20 70° 5 0.015 0.100 0.020 0.062 0.080
21 10° 5 0.015 0.100 0.020 Solid Smooth
22 50° 5 0.015 0.100 0.005 0.0 0.075
23 50° 5 0.015 0.100 0.005 0.062 0.075
24 50°¢ 5 0.015 0.100 0.005 Solid Smooth
25 50° 5 0.015 0.100 0.010 0.0 0.070
26 50° 5 0.015 0.100 0.000 0.062 0.070
21 50° 5 0.015 0.100 0.010 Solid Smooth
28 50° 5 0.015 0.100 0.020 0.0 0.060
29 50° 5 0.015 0.100 0.020 0.062 0.060
30 50° 5 0.015 0.100 0.020 Solid Smooth
Table 15.
Performance tests on honeycomb lands in stepped labyrinth seals.
Flow
. Test direction Ko KN  KT-in. KP-in. SH-in. CL-in. _Xin. b-in.
] STLD 90° 4 0.010 0.300 0.120 0.020 0.062 0.090
2 STLLD 90° 4 0.010 0.300 0.123 0.020 Solid Smooth
3 LISD 90° 4 0.010 0.300 0.12) 0.020 0.062 0.090
4 LTSD 90° 4 0.010 0.300 0.120 0.020 Solid Smooth
5 STLD 50° 4 0.015 0.300 0.120 0.020 0.062 0.090
b STLD 50° 4 0.001% 0.300 0.120 0.020 Solid Smooth
7 LTSD 50° 4 0.0'5 0.300 0.120 0.020 0.062 0.090
8 LTSD 50° 4 0.015 0.300 0.120 0.020 Sotlid Smooth

19
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with the test data for the largest clearance, CL = 0.020 in. Figures 30, 31,
and 32 provide influence coefficients for honeycomb lands with vertical and
slanted knives over a range of clearances. 7These plots indicate that the
honeycomb lands leak more than solid-smooth lands as the relative cell size
(X/CL) increases, probably due to the large surface porosity. However, leakage
significantly lower than that obtained from a solid-smooth land can result at
sufficientiy small relative cell sizes, X/CL < 7, probably due to the effect
of the roughness of the land surface. Slanting the knives of the straight
seal generally reduces the influence of the large (X/CL > .8) and small

(X/CL < .4) relative cell size honeycomb lands on the leakage performance.
The leakage of the large relative cell size (X/CL > .8) honeycomb lands de-
creases with decreasing knife angle, and the jeakage of the small relative
cell size (X/CL < .4) honeycomb lands increases with decreasing knife

angle. Crossover characteristics exist for the leakage of intermediate
relative cell size (4 < X/CL <8} honeycomb lands. These characteristics can
be verified by reference te Figures 33 and 34.

Knife rotation appears to have three distinct and essentially independent ef-
fects on the leakage performance of labyrinth seals: the thermodynamic effect
of disk pumping on the inlet tota) temperature to thz seal, the dynamic effpct
of the centrifugal forces on the seal flow-field structure, and the abrasive
wear of the rotor knife tip and land. The abrasive wear effects result from
the thermal and dynamic characteristics of the engine structure and the
tribology of the seal materials. The disk pumping effect is influenced by the
disk face geometry, wheel to stationary panel spacing, and thriugh-fiow
(ventilation) in the wheel space. The rotational effects on the seal flow
field are influenced by the geometry of the labyrinth seal and the surface
structure of the stator land. The typical influence of rotation on conven-
tional straight and stepped seal configurations produces dbetween 5% and 10%
leakage reduction at 785 ft/sec knife tip speed when compared with static
performance. With a smooth land surface, the effect of rotation is small.
However, with a roughened land or stepped seal configuration, the effect of
rotation may be sizable.
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Rotation of labyrinth seal knives reduces the flow parameter as knife tip speed
increases near a solid-smooth land. The effect of open-cell honeycomb lands

is similar in the roughness dominated domain at small relative cell sizes,
Figure 35. However, as the relative cell size increases, the porosity effects
become significant, and the flow parameter tends to increase with knife rota-
tion, Figure 36. Then in the porosity dominated domain (X/CL > .8), the seal
leakage increases with increasing knife tip speed, Figure 37. The slanted
knives exhibit effects similar to those of the vertical knives on leakage per-
formance as the knife tip speed increases.

A significant temperature rise is produced in the leakage flow passing through
a high speed labyrinth seal with open-cell honeycomb lands. Table 16 1ists the
increase in leakage air temperature observed under dynamic test conditions with
the straight seals in the 3-D rig. The solid-smooth land tests provide a base-
1ine temperature rise resulting from windage off of the front face of the test
rotor. The work required to swirl the flow between the rotor and a solid-
smooth land is equivalent to a temperature rise of only a degree or two in the
leakage flowrates at a PUIPD = 2.0. Consequently, the additional windage

at a honeycomb land in the labyrinth seal results in a temperature rise in the
leakage of as much as 20°F at PR » 2.0. The temperature rise is a function

of seal clearance and honeycomb size in addition to knife tip speed.

The results of the four-knife stepped seal tests corroborated the behavior
observed in the NASA program for the replacement of a solid-smooth land with a
honeycomb land using 0.062 in. cell size, When 0.062 in. open-cell honeycomd
lands replaced solid-smooth lands in vertical or slanted four-knife stepped
seals, the leakage increased from about 15% at static conditions to about 20%
at a knife tip speed of 523 ft/sec. Figure 38 shows the performance
comparisons between the stepped seals which were tested with solid-smooth
lands and honeycomb lands. The apparent data inconsistency between the
honeycomb land and solid-smooth land tn the sianted knife stepped seal
oriented for LTSD flow direction is explained by the inability of the knife
tips to reach the honeycomb land inserts at Ko = S0°. Therefore, the knives
were running with a solid-smooth land in both tests.
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Table 16.

Effects of honeycomb on temperature rise through
a 5-knife straight seal at Pgp = 2.0.

AT, temperature rise through seal

Land _with rotation, °F
Keé CL H/C type V = 261 V=523 V = 1785
deg in. X, in. ft/sec ft/sec ft/sec
90 0.005 Solid 15.9 23.17 47.4
90 0.00s 0.0 16.4 31.3 57.8
90 0.005 0.062 10.5 30.4 61.6
90 0.005 0.125 4.7 16.8 45.1
90 0.010 Solid 6.7 16.1 42.8
90 0.010 0.0 9.0 22.4 53.2
90 0.010 0.062 19 21 52.5
90 0.010 0.125 5.2 15.5 40.5
90 0.020 Solid 0.9 1.7 24.5
90 0.020 0.031 2.1 9.5 25.5
90 0.020 0.062 2.4 1.2 N
S0 0.020 0.125 3.3 1.2 31.2
70 0.005 Solid 11.3 24.9 46.6
70 0.005 0.0 15.2 21.3 55.7
70 0.005 0.062 12.6 32.3 66.2
10 0.0%0 Solid 8.0 19.9 40.4
10 0.010 0.03) 1.5 19.8 $1.%
10 0.010 0.062 1.1 20.3 50.8
10 0.020 Solid 1.9 10.0 28.0
70 0.020 0.0 2.7 10.2 3.8
10 0.020 0.062 3.6 12.0 Na
50 0.005 Soiid 11.8 25.8 44 .4
S0 0.005 0.0N 8.2 30.7 55.4
50 0.005 0.062 10.9 30.0 61.6
50 0.010 Solid 1.3 19.3 40
50 0.010 0.031 5.9 22.3 52.0
S0 0.000 0.062 6.8 19.9 50.1
50 0.020 Solid 2.2 10.3 28.9
S0 0.020 .00 2.1 10.8 38.3
50 0.020 0.062 2.8 1n.Ss 33.0
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(continued)
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The decreased leakage of the LTSD seal with K6 = 50° slanted knives and the
honeycomb land is attributed to the wall roughness effect on the cavity flow
between knives. This observation leads to the assumption that the increased
leakage incurred by the use of the 0.062 in. open-cell honeycomb lands in
stepped seals is due to the porosity effects at the knife-tips. Consequently,
it may be that porosity effects dominate the flow at the knife tips while the
roughness effects accrue to the overall gas path length in both straight seals
and stepped seals.

The following conclusions can be derived concerning the design of straight
seals with honeycomb lands:

o Honeycomb lands may be employed effectively for abradability and for
leakage control in straight seals. However, cel) size is an important
parameter for abradability and for aerodynamic effectiveness, which is a
function of operating tip clearance. A large size honeycomb, e.g., 0.125
tn,, should be used only where tip clearance will be approximately 0.020
in. or more. Cell size should dbe kept to the minimum acceptadle for
abradadility since that will minimize the sensitivity of performance to
tip clearance.

0 Slanted knives are only advantageous at small cperating clearances (near
0.005 in.) when used in conjunction with 3 more open cell size (9.062 in.)
honeycombd. - However, if abradability will permit the use of smaller cell
size honeycoad (0.031 in. or less) slanting knives will not cause a
performance penalty. Oesign simplicity would stil) reguire the general
use of vertical knives in straight seals with honeycomd lands because
slanted knives are most benefictial at clearances greater than 0.010 in.

0o not use openh-cell honeycomb lands in stepped seals., Stepped seals excel at
large clearances where abradability should not be a major design requirement.
1f abradability requirements necessitate honeycomb lands, design vertical
knife straight seals with the largest permissible cell size for acceptable
leakage performance.
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6.3 INTERNAL FLOW STRUCTURE

Fourteen seal-1ike configurations were subjected to a full Navier-Stokes flow
analysis during the process of developing the Analysis Model code (66). Sup-
porting tests to obtain leakage performance, qualitative flow field structure,
and quantitative data for Tocal flow field parameters were required to assist
the analytical modeling and to evaluate the predictions of the Analysis Model.
Large-scale models of these straight and stepped seals were required for de-
finitive flow visualization and flow field measurements. Seven of the seal
configurations studied with the Analysis Model were fabricated and tested in
the 2-D rig, Figures 39 and 40. Leakage performance, local flow field pres-
sure and temperature, and local velocity distributions were measured in these
seals.

A modified schlieren technique was developed for the visualization of the sub-
sonic flow structure in the large-scale seal models. The technique is dynamic
in nature and relies primarily on the mbt1on of the flow for structural defi-
nition. The flow fields for the seven reference seal configurations were re-
corded on video tape for qualitative comparison with the carry-over and re-
circulation structure calculated by the Analysis Model. In addition, sixteen
flow visualization tests were made to determine the way in which relative knife
edge sharpness (KR/CL) and interknife cavity aspect ratio (KP/KH) influence the
structure of the flow field in verticai knife straight seals.

6.3.1 Large-Scale Seal Performance

Performance tests, which were separate from the flow visualization tests, were
.conducted on the nine configurations of the large-scale seal models defined in
~Table 17. 7'n addition to providing leakage characteristics for the overall
perfarmance comparisons in Ref (66), these 2-D rig mcdels were Instrumented
for- internal temperature and static pressure measurements, which will be dis-
~ cussed laier. The straight seals were designed on a scale ten times (10X) the
- -size of the nominal full-scale seals. The stepped seals were limited to five
‘times (5X) the nom’nal full-scale dimensions by the test section height of the
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Figure 40. Straight seal configurations tested in support of the
Analysis Modei development.
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2-D rig. The leakage performance from the testing of the large-scale seals
was not incorporated into the Design Model data base because of the Reynolds
number influence. The measured performance for the large-scale labyrinth
seals, Table 17, are c¢ollected in Appendix B, section B.1.2.

6.3.2 Flow Visualization

The complex flow structure within the large-scale labyrinth seals was
visualized by means of a schlieren system because it is the only system
presently suitable for the observation of high-frequency, unsteady flow. The
2-D rig lends itself to the use of a Freon doping technique to generate the
required density gradients. Single and multi-location seeding points were
used to observe the diverse flow field phenomena. The single pass schlieren
system is shown schematically in Figure 41. The imaging was done over a
horizontal knife-edge so that the flow field displays ap/3y characteristics.

The airflow through the labyrinth seals was induced at low pressure ratios to
extend the viewing lengths by minimizing the mixing rates with the Freon.
Pressure drop across the seals was varied between 0.01 in. H20 and 10 in.

Hzo. Testing over this range of pressure ratios confirmed the maintenance

of flow field similarity. The only differences in the flow patterns occurred
in the size and rotational speeds of the vortices and the angle of the
expansion fan trailing the knife tip. This qualitative flow field information
assists in the understanding of local velocity and turbulence interaction and

provides substantiation for the flow patterns predicted by the Analysis Model.
6.3.2.1 Analysis Mode! Referen:e Seals

Seven of the fourteen reference labyrinth seal flow fields which were analyzed
by the full Navier-Stokes code were visualized with the schlieren system and
recorded on video tape. Tlable 18 defines the geometric parameters for the
nine tests which comprised this effort. In Figures 42 through 48, frames

representative of these recordings are presented in photographs of each of the
seal configurations tested.
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Figure 41. Schlieren imaging system.
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Although individual frames of the flow visualization video are not dramatically
informative, flow-field characteristics associated with local velocities,
separation, and stability can be readily seen from the fiuid motion observed
in the videotape replay on a television monitor. For example, the recording
of flow over the single-knife of a straight seal, Fig:re 42 clearly shows the
vortices upstream and downstream of the knii., as well as the acceleration and
separation of the flow in the clearance gap and the diffusion angle of the
discharging jet. In contrast, the flow across the knife with the rounded tip,
Figure 43, shows no separation of the flow into the gap and diminished regions
of vorticity both upstream and downstream from the knife. It can be seen that
the presence of a backward facing step upstream from a knife creates a
circuitous approach to the clearance gap which enhances the separation over
the knife tip, Figure 44. The slanting of such a knife creates a re-entrant
flow situation with a large well-defined vortex ahead of the knife, as visible
in Figure 45, and a severe separation over the knife tip. When multiple
knives are used in series, the downstream vortices are confined in the cavity
much closer to the knife than wou.u occur in the free-expansion behind a
single knife. Figure 46 shows -hat the carry-over from upstream knives in a
straight seal influences the discharce coefficients of the downstream knives
by imposing a significant velocity of approach, which results from the small
diffusion angle of the jets. The rotation of the second cavity vortex at
about twice the angular velccity of the vortex in the first cavity was an
interesting observation from the video taped records. The flow-field
configuration in stepped seals of STLU design is much different from that of
LTSD design. A comparison of Figure 47 with Figure 48 shows that both stepped
seal types experience some carry-over. However, the STLD design demonstrates
more flow blockage between knives and better vortex definition in the cavity
and ahead of the knife than that which exists in the LTSD flow. These
observations tend to reinforce the relative leakages measured during the
performance tests on these labyrinth seals.

The iapered knife stepped seal was observeu in both the LTSD and STLD

configurations, Figures 49 and 50, respectiv:ily. The conventional tapered
knives had minimal ¢ffect relative to the flow patterns observed in the
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similar seals with rectangular knives. For flow in the direction of small
diameter to large diameter (STLD), the seal exhibits a pair of counter-rotating
vortices between knives. For flow in the direction of large diameter to smalil
diameter (LTSD), the seal maintains three vortices between knives with a
nebulous transitory region in the wake of the upstream knife.

6.3.2.2 Straight Seal Parameter Effects

Another flow visualization study, Table 19, was made to investigate the
effects of knife edge sharpness (KR/CL) and interknife cavity aspect ratio
(KP/KH) on the seal flow field. The observations of these sixteen tests were
recorded on video tape and used to rationalize the results of the performance
testing on the full-scale 1apyr1nth seal models.

Table 19.
Flow visualization tests for strajght seal parameter effects.

Objective: Observation of flow field change with variable KR, KP/KH and seal
clearance in 10X-scale straight seals

1{] KT KN KH KP CL Justification

90 0.100 1.10 10 0.050 round tip, CL

90 0.100 1.10 10 0.100 round tip, CL

90 0.100 1.10 10 0.200 round tip, CL

90 0.100 1.10 .55 0.100 round tip, KP/KH
90 0.100 10 0 0.050 CL

90 0.100 10 10 0.100 hot-wire baseline
90 0.100 10 10 0.200 cL

90 0.100

W
wn

0.050 KP/KH, CL

el amd ansd wnh ok ad b
UV BWN —~O WD~ WA~
O
[ =]
) ) G L ) ) (o G € ) () LD W L W
—
o
OO O bt et cd DO ot ot ad O el i it

1.

1.

1.

1.
* 90 0.100 1. 55 0.100 KP/KH, CL
0.100 1.10 55 0.200 KP/KH, CL
90 0.100 0.275 10 0.050 KP/KH, CL
90 0.100 0.275 10 0.100 KP/KH, CL
90 0.100 0.275 10 0.200 KP/KH, CL
90 0.100 0.2715 55 0.050 KP/KH, CL
90 0.100 0.275 55 0.100 KP/KH, CL
90 0.100 0.275 55 0.200 KP/KH, CL
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With the straight seal design, changing the clearance from 0.050 in. to 0.200
in. did not significantly change the observed flow patterns. The worn edged
knives caused a slightly larger expansion fan than the sharp edged knives as
the flow passed into the cavity between knives. Increasing the clearance
decreased the relative effect of the knife tip radius (KR) based on the
leakage flow passing through the clearance gap (CL). The most noticeable
difference in flow patterns was observed upon changing the knife spacing (KP)

relative to the knife height (KH). For KP/KH = 1.0, there is a single vortex
between the knives. With KP/KH = 0.5, Figure 51, there is a double vortex
between knives with the bottom vortex forming and disintegrating. With KP/KH
= 2.0, Figure 52, the cavity vortex is moved downstream to the front face of
the trailing knife. The backwash behind the upstream knife is nebulous and
transitory.

6.3.3 Internal Pressures and Temperatures

Measurements of static pressure and total temperature were made at selected
points of the intraseal flow fields of the large-scale, 2-D rig models during
the performance testing. The static pressure measurements were compared with
the analytical equation derived by Kearton and Keh (31):

SCRCIOF

where r > r*

The total temperature measurements were evaluated against the adiabatic
thrott1ing model for seal leakage. The flow factor based on the average
static pressure in the knife gap was used to calculate an effective Mach
number at each knife clearance. The implied total pressure of this flow in
conjunction with the measured static pressure in the downstream cavity yields
an estimate for the Mach number of the carry-over. The area of the carry-over
Jet at the cavity static pressure taps then provides a diffusion angle for the
efflux from the knife gap.
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Figure 51. Vortex formation between vertical knives in a
straight seal with KP/KH = 0.5.
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The typical measured pressure gradient for a straight seal is shown in Figure
53. This test was with the 10X size straight seal of three knives with a.
solid-smooth land. The slope increase with increasing pressure ratio is
characteristic of rough lands also. A comparison with the approximate
analytical equation for labyrinth seal pressure gradient derived by Kearton
and Keh (Eq. 6.1) shows good agreement with the exception of the first knife
which seems to provide a larger than anticipated pressure drop.

The local Mach numbers in the straight seal carry-over, as indicated by the
static pressure measurements, are shown in Figure 54. As the overall pressure
ratio across the seal increases, the acceleration to the last knife becomes
more pronounced until choking occurs. The jet from the last knife appears to
behave in the same way as the discharge from an annular, convergent nozzle
with a large central base.

The total temperature measurements, as typified by Figure 55, had an
unexpected characteristic apparently generated in the cavity vortices. The
thermodynamic model for labyrinth seal leakage is the adiabatic throttling
process. For a nearly ideal gas (air in this case), the total temperature of
the system remains constant. This does not obviate the possibility of local
variations in stagnation temperature which might be generated by the cavity
vortices. For whatever reason, total temperature stratification occurred
within the seal. The temperature in the carry-over increased as the
temperature in the cavity decreased. The effect was most pronounced in the
cavity behind the first knife and was intensified by increasing overall

pressure ratio to approximately 2. At larger pressure ratios, no further
reductions in seal cavity temperatures were observed. The phenomena were

universal between smooth and rough lands and were repeatable for different
model builds.

The typical measured pressure gradient for a stepped seal of LTSD design is
shown in Figure 56 and of STLD desfign {s shown in Figure 57. The superior
throttling dynamics of the STLD design are indicated by the more uniform
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pressure gradient to the last knife. The good correlation of the measured
STLD seal pressures with the pressures predicted by the Kearton and Keh equa-
tion highlights the exceilent carry-over control*. '

The local Mach numbers in the stepped seal carry-over, as calculated from the
static pressures, are pilotted in Figure 58 for the LTSD design and in Figure
59 for the STLD design. The reduced STLD carry-over is indicated by the
slightly lower Mach numbers at equivalent seal pressure ratios. Comparison
with the Mach numbers of the straight seal at the same pressure ratio, Figure
54, shows that the higher leakage for the straight seal is reflected in the
higher carry-over Mach number relative to both LTSD and STLD stepped seals.

Typical total temperature characteristics for the LTSD and the STLD stepped
seals are {llustrated by Figures 60 and 61, respectively. The temperature
stratification phenomenon is identifiable 1n both types of stepped seals.
However, the temperature gistributions are observed to be different based on
the measurements made in the instrumented large-scale stepped seals. The LISD
design exhibits a temperature rise at the land similar to that observed in the
straight seal. However, no temperatiire depression was found in the between
knife cavities, as was the case with the straight seal. This may be due to
the serpentine “wash-through® flow characteristic seen in the cavities between
LTSD knives which prevents the establishment ¢f large, well defined cavity
vortexes like those observed in the straight seals and the STLD stepped seals.
However, small rotational flow fields, which foim at the corners of the forward
facing steps downstream of the knives and in the bottom half of the interknife
cavities, must operate to produce the elevated stagnation temperatures observed
at the stator land. Total temperature drops similar to but smaller than those
occurring in the straight seal cavities were seen in the cavities of the STLD
stepped seal. However, a combination of temperature drop followed by tempera-
ture rise occurred at the stator thermocouples in the STLD design. A satis-
tactory physical explanation of the total temperature measurements made in both

straight and stepped seals may depend upon a more detailed Navier-Stokes
analysis.

*The Kearton and Keh derivation assumes no carry-over between seal kaives.
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Static pressure measurements similar to those made in the 2-D rig on the large-
scale hardware were made at the stator walls of a full-scale straight seal that
was tested in the 3-D dynamic rig. Only the cavity pressures were measured and
compared to the Kearton and Keh model for these seals. Solid-smooth and rough
land hardware were used for these tests. No intraseal temperature measurements
were made with the full-scale geometry. Static pressure measurements were made
along the lands of a typical four-knife straight seal at the midline of the
cavities to investigate carry-over perturbations caused by stator surface
roughness and by rotation. The pressure gradient through the static 3-D seal
exhibits the same characteristic as i1t did in the large-scale 2-D seal, Fig-
ures 62 and 63. An unexpectedly large part of the overall pressure drop oc-
curs across the first knife. This characteristic is moderated by rotational
effects and to a lesser extent by surface roughness.

6.3.4 Internal Velocity Profiles

The velocity profiles within the flow fields of two baseline seal configura-
tions were measured for Analysis Model validation. The conventional configur-
ations of a straight seal and a stepped seal in the STLD flow direction were
selected as the baselines for experimental data comparison with the full
Navier-Stokes calculations from the Analysis Model (66). Figure 64 is a
schematic representation of the baseline three-knife straight seal with the
velocity measurement stations identified dy alphabetic sentinels. Figure 65
is a similar schematic for the baseline three-knife stepped seal. These seals
were large-scale models from the set that was tested with the schilieren system
in the 2-D rig. The availability of the flow visualization results assisted
the evaluation and interpretation of the velocity measurements.

Two techniques were employed for the measurement of the velocity profiles at
the designated seal stations. A Laser Doppler Velocimeter (LDV) system was
selected initially, but the small size of the seal mode! with respect to the
sampling volume of the instrumentation forced the LOV testing to be
abandoned. A hot-wire anemometer system (HWA) was substituted successfully
for the LOV. The experimental procedures and data are discussed, but the
comparisons with the Analysis Model calculations are presented in Ref. (66).
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6.3.4.1 Laser Doppler Velocimetry

The LDV technigue was the instrument of choice for measuring the velocity dis-
tribution in the 2-D labyrinth seal rig models. LDV is an optical technique
; which does not disturb the flow and permits unambiguous determination of the
* flow direction. The LDV concept proposed by M. J. Rudd was utilized as shown
g in Figure 66. The Allison system consisted of a 4 watt Argon-ion laser for
the coherent light source, a beam splitter, appropriate optics, and a photo-
;' detector to observe the frequency shift in the scattered light, which is due
) to the velocity of the target. The system was operated in the forward
scattering mode with the laser output in the single green line. It was
necessary to seed the flow with fine (1 um average, 3 um maximum diameter)
dioctyl phthalate (DOP) oil mist to obtain sufficient reflective particulate
for a measurable signal. Theoretical calculations verified that the DOP
particles followed the airfiow with negligible slip. A TSI processor analyzed
the LDV signal.

I
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The difficulties with the LDV system were two-fold:

-

1) The design and dimensions of the 2-0 rig were inappropriate for the
measurements being attempted.
. 2) The single-component LDV system was inadequate for measuring two-component
; velocities in the interknife cavities.

ra

e § BN

The width of the 2-0 rig (6.28 in.) and the small clearance gaps (0.100 in.)
of the seal models limited the laser beams to a narrow crossing angle. The

{ Y
S k i} resultant probe volume was on the order of 10% of the clearance gap with an
--g aspect ratio of about 10. This relatively large probe volume tended to smear
E_ ﬁ . the velocity gradient toward the average velocity, especially in the neighbor-
" . hood of the boundary layers. Although good correlation was obtained between
i the mass flowrate integrated from the velocity profile and the mass flowrate
;; measured by a downstream orifice plate, the velocity gradients were much
; . smaller than those predicted by the Analysis Model.
' >
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Sequential, orthogonal (at 45° and 135° to the flow in the knife gap)
measurements in the interknife cavities were required of the single-component
LDV system. The vortex instability made the sequential measurements for

resultant velocity uncertain.

As a consequence of these experimental difficulties with the small seal model
and the two-axis velocity measurements, the LDV system was abandoned in favor
of hot-wire anemometer testing.

6.3.4.2 Hot-Wire Anemometry

In conjunction with the visualization of the global flow fields of the
baseline seal configuration by schlieren imaging, a HWA system has

sufficiently high response and accuracy to measure local velocities and
turbulence intensities,

x 100% 6.2

where U instantaneous velocity

<

average velocity
number of data samples

xz
©

Since the flow visualization studies had indicated a quasi-steady, two-dimen-
sfonal streamline pattern within the cavities and vortex patterns which were
statistically repeatable, the HWA system can measure the local velocities in
the regions of swirling, separated, or stagnated flow. The flow through the
clearance gaps and in the carry-over is essentially jet-like, which makes
these flows easily measured with a HWA system. The experimental arrangement

of the HWA system for flow field measurements in the large-scale baseline
seals in the 2-D rig is shown schematically in Figure 67.
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The DISA type 55M constant temperature anemometer (CTA) system was used for
single-wire hot-wire measurements in the labyrinth seal rig. The single-wire
probes used were the DISA type 55P11 straight general purpose miniature wire
probes with a wire diameter of 5 ym. Calibrations of hot-wires were made
using DISA calibration equipment for atmospheric pressure calibration.
Subatmcspheric calibrations were made using a calibrator that attached to a
steam ejector which provided conditions from 12 psia to 4 psia static oressure
at the hot-wire. A calibration curve was obtained for the hot-wire output
voltage versus the flow velocity at conditions of constant temperature and
static pressure.

The linearizer shown in the Figure 67 schematic is used to linearize the raw
anemometer output voltage. The linearizer must be set up for each calibration
curve over the desired measurement range. The linearized voltage and the RNS
voltage are used to calculate the turbulence intensity as follows:

Tiw (Vous/Vuge) 1005 » 6.3

The raw hot-wire velocity data must be corrected for density'differences
between the calibration conditicns and the run conditions. The response of a
constant-temperature hot-wire anemometer is sensitive to the produci of pl
for static pressures near ambient (14.5 psia + & psi). For these cases, the
indizated velocity 15 simply corrected by a density ratio:

=4

_atmosph. cal. 6.4

u = | X

A temperature difference between calibration and run conditions requires a
further hot-wire data correction, besides the temperature dependence of the
density in equation 6.4.

The paper by Bearman (1971) presents a correction for ambient temperature

drift to be applied to the indicated velocity. A complete correction equation
to apply to hot-wire anemometer data for PS = 14.5 psia ¢ 4 psi is:
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U = [1 + .00834(T

corr /T Jlu 6.5

meas‘Tcal)][(Ps caI/Tcal)/(Ps meas’ meas meas

where T is in Rankine degrees

For static pressures outside the range above, the measured velocity is
determined by interpolation directly from the calibration curves, and then the
multiplicative temperature correction, [(1 + .00834 (T ])]

Tmeas Tca
applied.

Hot-wire velocity measurements were also made at the seven measurement
locations along the rig centerline shown in Figures 64 and 65. These
measurements were made by inserting the hot-wire through a side plate and
using a s1liding clamp positioner. Flow direction was determined by minimizing
the output of a single-wire hot-wire. The minimum output is reached when the
hot-wire is aligned with the flow direction. A protractor attached to the
hot-wire sheath gave the flow direction to an overall accuracy of +5 deg.

Initial hot-wire anemometry work above the knives was performed by extending
the hot-wire through a 0.161 in. diameter hole above the first and third
knives of the straight seal. This hole was large relative to the knife tip
thickness, KT = 0.100 in. The velocity profile measured above ihe first knife
with this setup was always peaked near the knife tip. The analytical
solution, on the other hand, yielded a velocity profile ahove the first knife
that was peaked near ihe land and deficicnt near the knife tip. This velocity
profile discrepancy between the analytical and experimental results above the
first knife can be explained by the local diffusion into the access hole. A
local reduction in the flow velocity near the land was measured by the
hot-wire anemometer due to the large access hole The HWA probe tended to
plug the hole as the hot-wire approached the knife tip which reduced the
measurement error. .owever, agreement between the experimental and analytical
results was obtained for the velocity profile above the third knife. The
higher Mach number (.0.7) decreased the effect of the hole.
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The rig hot-wire access was improved by making slotted holes to allow just the
two prongs supporting the hot-wire to enter the flow field for measurements
near the land. A sketch of the hot-wire access provided above the first knife
is shown in Figure 68. The hot-wire was located using a precisely machined

" holder that was shimmed up until the sensing element was flush with the upper
land. By removing shims the hot-wire was accurately extended into the flow
field near the upper land.

The experience with the effect of the HWA access holes on the measurement of
the labyrinth seal flow in the clearance gaps demonstrates a primary
experimental difficulty with invasive instrumentation. The instrumentation
distorts the parameters to be measured. Consequently hardware scale relative
to all invasive components of the measuring instrument must minimize the
relative disturbance to the investigated phenomena.

Discounting the perturbations of the flow field by the HWA probing system the
velocity measurements had an experimental uncertainty of about +3% based on
instrument calibration, data interpolation, and unsteadiness.

The flow field velocities were measured at the selected locations within the
stepped seal at a pressure ratio (PU/PD) of 2. The velocity measurements
along the centerlines of the clearance gaps are given relative to the vertical
distance above the knife tips in Tables 20 and 21 for the three-knife straight
seal and in Table 22 for the three-knife stapped seal.

The geometry of the slots precludes the effactive measurement of any small
transverse velocities. Therefore, the HWA measurements in the clearance gaps
consist only of streamwise velocities. The velocity measurements which were
made near the faces of the knives and in the interknife cavities of the
three-knife straight seal included streamwise and transverse components. The
resultants of these velocities are tabulated in Table ¢3 for HWA measurements
relative to the root of the interknife cavities. Measurements were not made
along the station planes in the interknife cavities of the three-knife stepped
seal.
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Table 20.

Three-knife straight (10X) labyrinth seal model
hot-wire anemometer data above the first knife at Pgp= 2.0.

Station B
Velocity profile above the first knife, Pstatic = 11.02 psia
Test 1:
' ] Tl
y, position streanwise turbulence
in. above knife tip velocity, m/s intensity, ¥
0.100 198 2.13
0.098 198 1.99
0.095 198 2.19
0.090 200 3.61
0.080 200 4.37
0.070 198 4.24
0.060 198 4.67
0.050 197 4,99
0.040 196 5.715
0.030 193 6.78
0.020 180 15.0
0.010 142 20.0
0.008 145 19.9
0.005 105 28.8
Worifice = 0.154 Ibm/sec

wve]ocity profile = 0.157 lbm/sec (2.2% high)

velocity profile above the first knife, Pgtatic = 10.90 psia

Test 2:
] T1
y, position streamwise turbulence
in. above knife tip velocity, m/s intensity, %
0.100 197 4,73
N 0.097 206 2.80
. 0.095 206 2N
3 0.090 206 3.50
N, 0.080 205 3.68
0.070 203 3.56
- 0.060 202 4.00
A\ 0.050 20 3.88
- 0.040 198 4.84
: 0.030 188 1.68
% 0.020 172 14.6
.: Uor1f1ce e 0.]54 lbmlsec
. wvelocity profile =« 0.156 lbg/sec (1.7% high)
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Table 21.

Three-knife straight (10X) labyrinth seal model
hot-wire anemometer data above the third knife at Pg= 2.0.

Station I

velocity profile over the third knife, Pgtatic = 7.25 psia

1]
streamwise

velocity, m/s

¥, position
in. above knife tip

0.100 no measurement
0.090 285
0.080 278
0.070 270
0.060 262
0.050 255
0.040 249
0.030 243
0.020 247
0.010 226
0.005 195
worifice = 0.141 1bp/sec

Uve]oc1ty profi]e = 0.157 Ibm/sec (“.5’ h‘gh)

Table 22.
Three-knife STLD stepped (5X) labyrinth seal model
hot-wire anemometer data at Pp= 2.0.

Station 8

Velocity profile above the first knife. Pgtatic = 12.96 psia

Ttotal = 10.0°F

u TI
y, position streamwise turbulence
in. above knife tip veloc m/s intensity, X
0.100 124 1.4
0.095 125 2.7
0.090 125 3.2
0.080 126 4.6
0.070 126 5.4
0.060 126 6.1
0.050 126 6.3
0.040 126 1.4
0.030 123 11.4
0.020 55 22
0.0010 24 21
144
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Table 22 (Con't)
Station F

Velocity profile above the second knife. Pgtatic = 10.51 psia
Ttotal = 11.5°F

u
¥, position streamwise
in. above knife tip velocity, m/s
0.100 163
0.095 m
0.090 173
0.080 118
0.070 181
0.060 181
0.050 180
0.040 165
0.030 130
0.020 59
0.010 40

Station [

Velocity profile above the third knife. Pgtatic = 7.85 psia
Ttotal = 11.5°F

U
y, position streamwise
in. above knife tip velocity, m/s
0.100 no measurement
0.095 191
0.090 185
0.080 117
0.070 170
0.060 160
0.050 147
0.040 136
0.030 125
0.020 108
0:010 62
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Table 23.
Velocity components in the cavity regions for the three-knife
straight seal at Py/Pp = 2.0.

STATION A STATION C STATION D STATION E
v Um ém Um ém _Um om Um ém
1.1 49.8 28 30.4 KLY| 74.5 0 107.5 359
1.0 42.17 39 . 430 52 50.0 14 44.3 351
0.9 33.4 50 47.9 15 30.0 4 36.7 314
0.8 26.3 56 52.5 95 20.0 14 43.1 267
0.7 19 55 56.3 99 17.0 90 48.8 254
0.6 13.8 47 60.9 103 17.6 90 49.6 253
0.5 10.2 25 55.1 10 20.0 128 54.5 248
0.4 34.6 160
0.3 51.5 170
0.2 52.8 167
0.1 54.9 161
STATION G STATION H STATION J
Y| Lo G Um Sn ‘n. Om
1.1 30.8 52 1251 352 40.5 306
1.0 51.4 64 53.8 347 25.3 295
0.9 59.6 80 31.8 N 24.17 321
0.8 66.2 98 46.6 280 23.4 15
0.7 69.6 98 53.1 251 23.4 16
0.6 62.0 100 59.9 256 21.8 22
0.5 47.6 95 63.1 252 20.0 22
Legend

y (in.) - Distance from rotor

up(m/sec) - HMeasured speed

6q (deg) - Measured angle
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The velocities measured in the straight and stepped baseline seals are compared
to the caiculated flow fields in Ref. (66) as a method for evaluating the com-
putational accuracy of the Navier-Stokes solution employed in the Analysis
Model. Basically the velocities measured in the clearance gaps of the three-
knife straight seal were about 20X higher than those calculated. The measured
velocity profiles had thinner boundary layers on both the knife tip and land
than the Analysis Model results. However, the measured and predicted flow
fields are qualitatively similar, especially in the cavity regions. The
straight seal comparison reversed for the baseline STLD stepped seal. The
measured boundary layer or separation on the knife tips was thicker than that
predicted by the Analysis Model. The lack of a discernible boundary layer on
the lands of either the straight seal or stepped seal models is attributed to
the flow perturbation introduced by the hot-wire access slots in the lands.
Qualitatively and quantitatively the comparison of the measured flow fields
with the calculated flow fields was better in the stepped seal than in the
straight seal.

Some of the discrepancies between experimental and analytical velocity data
might be caused by the differences between the inlet velocity profiles assumed
for the calculations and the inlet velocity profiles measured for the straight
seal, Figure 69, and the stepped seal, Figure 70. The initial boundary layer
thicknesses imposed upon the Analysis Model solutions were significantly
greater than those measured at the “starting" upstream station. The carefully
constructed lemniscate inlet of the 2-D rig minimized the boundary layer effect
on the flow approaching the seal models. Also, the calculations did not cor-
rect for end wall losses present in the 2-D rig. There are several obvious
improvements which could be made to the experimental procedures, e.g., in-
creased model scale, non-invasive velocity measuring system, and careful sim-
ulation of far upstream and far downstream channel geometry. The Analysis
Model could be modified to more accurately represent the test conditions, e.g.,
exact input of the measured inlet velocity profile, corrections for end wall
effects, and fine tuning of the wall friction and turbulence modeling. How-
ever, as an initial attempt at numerical solutions of the full Navier-Stokes
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equations for the compressible flow through conventional labyrinth seals of
straight and stepped configurations, the results of the Labyrinth Seal
Analysis program have been very encouraging.
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LIST OF SYMBOLS
DEFINITION

Constant

Cross-sectional area

Flow area between the seal knives and land, seal throat
Thickness of land material inserts

Specific heat at constant pressure

Discharge coefficient, CD = w/w1d
Clearance between seal knives and land
Distance-to-contact: axial clearance between knife and
land, undefined for constant height straight-through seals
Function of the variables ( )
Fanning friction factor
Standard gravitational acceleration mass conversion factor
HReight of the seal

Hydraulic diameter, H = %ﬁ

Contraction coefficient
Expansion coefficient

wall friction loss coefficient
Knife height

Number of knives

Knifte pitch

Knife tip radius

Knife tip thickness
venturi-friction coefficient
Knife taper angle

Knife slant angle

Length of gas path

Natural or Naperian logarithm
tength of the seal

Leakage flow direction from the large-tc-small sea! diameter
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deg, °*
deg, *
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DEFINITION

Mach number

Specific seal knife number

Land material porosity, ratio of effective open area to
total area

Wetted perimeter of duct

Local static pressure

Seal plenum downstream pressure

Static pressure downstream of seal knife n

Seal pressure ratio, PU/PD

Local total pressure

Seal plenum upstream pressure

PD/PU

PD/PU where PD is the maximum downstream pressure to
maintain choked leakage flow through the seal

Rotor radius at the knife tips

Radtus of th2 edge break on knife tips

Gas constant

Streamwise Reynolds number, 9%’-‘-

purKZ
Rotational Reynolds number, -

Step height

Leakage flow direction from the small-to-large seal diameter
Local static temperature

Local total lemperature

Taylor number, Ya = pV{(CL) %L / u
K

Seal upstream plenum temperature

Absolute (resultant) flow velocity at angle @
Streamwise velocity

Voltage

Seal knife tip speed
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in.

psia
psia
psia

psia
psia

in.

°R
°F

*R
m/sec
m/sec
volts
ft/sec



SYMBOL DEFINITION UNITS

w Seal airflow rate lbm/sec
W4 Ideal or isentropic airflow rate lbm/sec
X Multiplication operator
X Honeycomb cell size in.
XMUL Area correction factor for clearance above a knife which
is downstream of a step
y Vertical axis or transverse flow direction
2 Horizontal axis or streamwise flow direction
i Compressibility factor relative to a thermally perfect gas
« Jet expansion angle deg, °
Y Ratio of specific heats
r Velocity carry-over factor
$ Jet expansion height in,
¢ Land suyrface roughness v in,
¥ Fluid dynamic viscosity flb?ec
v Conventional transcendental number, ratio of circular
circumference to diameter

b
p Density -%

ft

opnl/2

o™ ;EngiirfIOu parameter ::: s:c
w Rotational speed, angular velocity g%%
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B.1 2-D RIG DATA

The following static data were acquired in the 2-D labyrinth seal test rig
with a pressurized inlet plenum and an atmospheric exhaust. The inlet air
temperatures were those of the ambient air.

) B.1.1 Full-Scale Seals

The fuli-scale seal dimensions are typical of meuium to large gas turbine
engines. These test results formed a part of the data bank for the Design
Model development.
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B.1.2 Large-Scale Seals

The large-scale seals were geometrically similar to full-scale seal
configurations but were enlarged to the maximum model size acceptable to the

2--D rig:

. Straight seals: 10 times full-scale
Stepped seals: 5 times full-scale

The performance data and interknife cavity pressure and temperature
measurements were used to verify the accuracy of the Analysis Model
predictions.

.............................
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A E

IE‘
i
o B.2 3-D RIG DATA
e
%_ The static and dynamic performance data acquired from the 3-D rig tests on
%" full-scale seals:
o3
é. o Supported the Design Model development with data base performance and
% . interknife cavity pressures.
v 0 Validated the Design Model accuracy for a seal configuration not in the

development data base.
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APPENDIX C

EFFECT OF THE INTERKNIFE CAVITY ASPECT RATIO (KP/KH) ON
STRAIGHT SEAL PERFORMANCE
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The following static data were acquired in the 2-D labyrinth seal test rig
with a pressurized inlet plenum and an atmospheric exhaust. The inlet air
temperatures were the same as the rig ambient air.

The data reduction and plotting were automated. Irregular plots of the seal
performance are the result of the plot algorithm. The test points are
connected with straight lines without regard for smoothing data scatter. '
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APPENDIX O

EFFECT OF OPEN-CELL HONEYCOMB LANDS ON THE PERFORMANCE OF
STRAIGHT AND STEPPED LABYRINTH SEALS

269




R
-,

2,

ity Sy

ad
Ty "D

D S |

ot B <

e A

BINNN NN

The following static data were acquired in the 3-D labyrinth seal test rig
with a pressurized inlet plenum and an atmospheric exhaust. The inlet air
temperatures were the same as the environmental temperature.

The data reduction and plotting were automated. Irregular plots of the seal
performance are the result of the plot algorithm. The test points are
connected with straight lines without regard for smoothing data scatter.
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STEPPED SEALS

DTC — |o— KP ——t=f fue— KT
{ ¢ CcL KH
mmm\! l
LAND SH  duvounuuld T
JRYTIRTER T KH ¥ SH \l

LT8O filow up the
fand step

(not shown)
STLD flow direction

shown

STRAIGHT SEALS

KP = — l—‘ KT
{AKD
JETTEER IR AR R TR ER L ARARRRTERRRRARN SRR RRARR TR R R TN

Labyrinth Seal Nomenclature.
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